Copied to
clipboard

G = He33Q8order 216 = 23·33

1st semidirect product of He3 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial

Aliases: He33Q8, C323Dic6, C6.9(S3×C6), (C3×C6).6D6, C3⋊Dic3.C6, C324Q8⋊C3, C12.3(C3×S3), (C3×C12).1C6, (C3×C12).1S3, C4.(C32⋊C6), C322(C3×Q8), (C4×He3).1C2, C3.2(C3×Dic6), C32⋊C12.2C2, (C2×He3).6C22, (C3×C6).1(C2×C6), C2.3(C2×C32⋊C6), SmallGroup(216,49)

Series: Derived Chief Lower central Upper central

C1C3×C6 — He33Q8
C1C3C32C3×C6C2×He3C32⋊C12 — He33Q8
C32C3×C6 — He33Q8
C1C2C4

Generators and relations for He33Q8
 G = < a,b,c,d,e | a3=b3=c3=d4=1, e2=d2, ab=ba, cac-1=ab-1, ad=da, eae-1=a-1, bc=cb, bd=db, ebe-1=b-1, cd=dc, ce=ec, ede-1=d-1 >

3C3
3C3
6C3
9C4
9C4
3C6
3C6
6C6
2C32
9Q8
3C12
3C12
3Dic3
3Dic3
6C12
9C12
9Dic3
9C12
9Dic3
2C3×C6
3Dic6
9Dic6
9C3×Q8
2C3×C12
3C3×Dic3
3C3×Dic3
3C3×Dic6

Smallest permutation representation of He33Q8
On 72 points
Generators in S72
(1 40 7)(2 37 8)(3 38 5)(4 39 6)(9 66 46)(10 67 47)(11 68 48)(12 65 45)(13 51 31)(14 52 32)(15 49 29)(16 50 30)(17 42 62)(18 43 63)(19 44 64)(20 41 61)(21 58 33)(22 59 34)(23 60 35)(24 57 36)(25 56 71)(26 53 72)(27 54 69)(28 55 70)
(1 21 29)(2 22 30)(3 23 31)(4 24 32)(5 35 51)(6 36 52)(7 33 49)(8 34 50)(9 69 43)(10 70 44)(11 71 41)(12 72 42)(13 38 60)(14 39 57)(15 40 58)(16 37 59)(17 45 53)(18 46 54)(19 47 55)(20 48 56)(25 61 68)(26 62 65)(27 63 66)(28 64 67)
(1 7 15)(2 8 16)(3 5 13)(4 6 14)(9 27 46)(10 28 47)(11 25 48)(12 26 45)(17 42 65)(18 43 66)(19 44 67)(20 41 68)(21 33 40)(22 34 37)(23 35 38)(24 36 39)(29 49 58)(30 50 59)(31 51 60)(32 52 57)(53 72 62)(54 69 63)(55 70 64)(56 71 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 18 3 20)(2 17 4 19)(5 41 7 43)(6 44 8 42)(9 51 11 49)(10 50 12 52)(13 68 15 66)(14 67 16 65)(21 54 23 56)(22 53 24 55)(25 58 27 60)(26 57 28 59)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 62 39 64)(38 61 40 63)

G:=sub<Sym(72)| (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,69,43)(10,70,44)(11,71,41)(12,72,42)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,45,53)(18,46,54)(19,47,55)(20,48,56)(25,61,68)(26,62,65)(27,63,66)(28,64,67), (1,7,15)(2,8,16)(3,5,13)(4,6,14)(9,27,46)(10,28,47)(11,25,48)(12,26,45)(17,42,65)(18,43,66)(19,44,67)(20,41,68)(21,33,40)(22,34,37)(23,35,38)(24,36,39)(29,49,58)(30,50,59)(31,51,60)(32,52,57)(53,72,62)(54,69,63)(55,70,64)(56,71,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63)>;

G:=Group( (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,69,43)(10,70,44)(11,71,41)(12,72,42)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,45,53)(18,46,54)(19,47,55)(20,48,56)(25,61,68)(26,62,65)(27,63,66)(28,64,67), (1,7,15)(2,8,16)(3,5,13)(4,6,14)(9,27,46)(10,28,47)(11,25,48)(12,26,45)(17,42,65)(18,43,66)(19,44,67)(20,41,68)(21,33,40)(22,34,37)(23,35,38)(24,36,39)(29,49,58)(30,50,59)(31,51,60)(32,52,57)(53,72,62)(54,69,63)(55,70,64)(56,71,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63) );

G=PermutationGroup([[(1,40,7),(2,37,8),(3,38,5),(4,39,6),(9,66,46),(10,67,47),(11,68,48),(12,65,45),(13,51,31),(14,52,32),(15,49,29),(16,50,30),(17,42,62),(18,43,63),(19,44,64),(20,41,61),(21,58,33),(22,59,34),(23,60,35),(24,57,36),(25,56,71),(26,53,72),(27,54,69),(28,55,70)], [(1,21,29),(2,22,30),(3,23,31),(4,24,32),(5,35,51),(6,36,52),(7,33,49),(8,34,50),(9,69,43),(10,70,44),(11,71,41),(12,72,42),(13,38,60),(14,39,57),(15,40,58),(16,37,59),(17,45,53),(18,46,54),(19,47,55),(20,48,56),(25,61,68),(26,62,65),(27,63,66),(28,64,67)], [(1,7,15),(2,8,16),(3,5,13),(4,6,14),(9,27,46),(10,28,47),(11,25,48),(12,26,45),(17,42,65),(18,43,66),(19,44,67),(20,41,68),(21,33,40),(22,34,37),(23,35,38),(24,36,39),(29,49,58),(30,50,59),(31,51,60),(32,52,57),(53,72,62),(54,69,63),(55,70,64),(56,71,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,18,3,20),(2,17,4,19),(5,41,7,43),(6,44,8,42),(9,51,11,49),(10,50,12,52),(13,68,15,66),(14,67,16,65),(21,54,23,56),(22,53,24,55),(25,58,27,60),(26,57,28,59),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,62,39,64),(38,61,40,63)]])

He33Q8 is a maximal subgroup of
He33SD16  He32Q16  He34SD16  He33Q16  He34Q16  He36SD16  He38SD16  He36Q16  C3⋊S3⋊Dic6  C12.84S32  C12.85S32  C12.S32  C62.36D6  C62.13D6  Q8×C32⋊C6
He33Q8 is a maximal quotient of
C62.19D6  C62.20D6

31 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B4C6A6B6C6D6E6F12A12B12C···12J12K12L12M12N
order12333333444666666121212···1212121212
size1123366621818233666226···618181818

31 irreducible representations

dim11111122222222666
type++++-+-++-
imageC1C2C2C3C6C6S3Q8D6C3×S3Dic6C3×Q8S3×C6C3×Dic6C32⋊C6C2×C32⋊C6He33Q8
kernelHe33Q8C32⋊C12C4×He3C324Q8C3⋊Dic3C3×C12C3×C12He3C3×C6C12C32C32C6C3C4C2C1
# reps12124211122224112

Matrix representation of He33Q8 in GL6(𝔽13)

001000
000100
000010
000001
100000
010000
,
1210000
1200000
0012100
0012000
0000121
0000120
,
0000121
0000120
100000
010000
0001200
0011200
,
370000
6100000
003700
0061000
000037
0000610
,
011112011
11002110
112011011
02110110
011011112
11011002

G:=sub<GL(6,GF(13))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12,12,12,0,0,0,0,1,0,0,0,0,0],[3,6,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,7,10],[0,11,11,0,0,11,11,0,2,2,11,0,11,0,0,11,0,11,2,2,11,0,11,0,0,11,0,11,11,0,11,0,11,0,2,2] >;

He33Q8 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_3Q_8
% in TeX

G:=Group("He3:3Q8");
// GroupNames label

G:=SmallGroup(216,49);
// by ID

G=gap.SmallGroup(216,49);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,169,79,1444,736,5189]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of He33Q8 in TeX

׿
×
𝔽