Extensions 1→N→G→Q→1 with N=C10 and Q=F5

Direct product G=N×Q with N=C10 and Q=F5

Semidirect products G=N:Q with N=C10 and Q=F5
extensionφ:Q→Aut NdρLabelID
C101F5 = C2×C5⋊F5φ: F5/C5C4 ⊆ Aut C1050C10:1F5200,47
C102F5 = C2×C52⋊C4φ: F5/C5C4 ⊆ Aut C10204+C10:2F5200,48
C103F5 = C2×D5.D5φ: F5/D5C2 ⊆ Aut C10404C10:3F5200,46

Non-split extensions G=N.Q with N=C10 and Q=F5
extensionφ:Q→Aut NdρLabelID
C10.1F5 = C25⋊C8φ: F5/C5C4 ⊆ Aut C102004-C10.1F5200,3
C10.2F5 = C2×C25⋊C4φ: F5/C5C4 ⊆ Aut C10504+C10.2F5200,12
C10.3F5 = C524C8φ: F5/C5C4 ⊆ Aut C10200C10.3F5200,20
C10.4F5 = C525C8φ: F5/C5C4 ⊆ Aut C10404-C10.4F5200,21
C10.5F5 = C523C8φ: F5/D5C2 ⊆ Aut C10404C10.5F5200,19
C10.6F5 = C5×C5⋊C8central extension (φ=1)404C10.6F5200,18