# Extensions 1→N→G→Q→1 with N=C2×C26 and Q=C22

Direct product G=N×Q with N=C2×C26 and Q=C22
dρLabelID
C23×C26208C2^3xC26208,51

Semidirect products G=N:Q with N=C2×C26 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C26)⋊C22 = D4×D13φ: C22/C1C22 ⊆ Aut C2×C26524+(C2xC26):C2^2208,39
(C2×C26)⋊2C22 = D4×C26φ: C22/C2C2 ⊆ Aut C2×C26104(C2xC26):2C2^2208,46
(C2×C26)⋊3C22 = C2×C13⋊D4φ: C22/C2C2 ⊆ Aut C2×C26104(C2xC26):3C2^2208,44
(C2×C26)⋊4C22 = C23×D13φ: C22/C2C2 ⊆ Aut C2×C26104(C2xC26):4C2^2208,50

Non-split extensions G=N.Q with N=C2×C26 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C26).C22 = D42D13φ: C22/C1C22 ⊆ Aut C2×C261044-(C2xC26).C2^2208,40
(C2×C26).2C22 = C13×C4○D4φ: C22/C2C2 ⊆ Aut C2×C261042(C2xC26).2C2^2208,48
(C2×C26).3C22 = C4×Dic13φ: C22/C2C2 ⊆ Aut C2×C26208(C2xC26).3C2^2208,11
(C2×C26).4C22 = C26.D4φ: C22/C2C2 ⊆ Aut C2×C26208(C2xC26).4C2^2208,12
(C2×C26).5C22 = C523C4φ: C22/C2C2 ⊆ Aut C2×C26208(C2xC26).5C2^2208,13
(C2×C26).6C22 = D26⋊C4φ: C22/C2C2 ⊆ Aut C2×C26104(C2xC26).6C2^2208,14
(C2×C26).7C22 = C23.D13φ: C22/C2C2 ⊆ Aut C2×C26104(C2xC26).7C2^2208,19
(C2×C26).8C22 = C2×Dic26φ: C22/C2C2 ⊆ Aut C2×C26208(C2xC26).8C2^2208,35
(C2×C26).9C22 = C2×C4×D13φ: C22/C2C2 ⊆ Aut C2×C26104(C2xC26).9C2^2208,36
(C2×C26).10C22 = C2×D52φ: C22/C2C2 ⊆ Aut C2×C26104(C2xC26).10C2^2208,37
(C2×C26).11C22 = D525C2φ: C22/C2C2 ⊆ Aut C2×C261042(C2xC26).11C2^2208,38
(C2×C26).12C22 = C22×Dic13φ: C22/C2C2 ⊆ Aut C2×C26208(C2xC26).12C2^2208,43
(C2×C26).13C22 = C13×C22⋊C4central extension (φ=1)104(C2xC26).13C2^2208,21
(C2×C26).14C22 = C13×C4⋊C4central extension (φ=1)208(C2xC26).14C2^2208,22
(C2×C26).15C22 = Q8×C26central extension (φ=1)208(C2xC26).15C2^2208,47

׿
×
𝔽