Extensions 1→N→G→Q→1 with N=C5×Dic5 and Q=C2

Direct product G=N×Q with N=C5×Dic5 and Q=C2
dρLabelID
C10×Dic540C10xDic5200,30

Semidirect products G=N:Q with N=C5×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic5)⋊1C2 = C5⋊D20φ: C2/C1C2 ⊆ Out C5×Dic5204+(C5xDic5):1C2200,25
(C5×Dic5)⋊2C2 = D5×Dic5φ: C2/C1C2 ⊆ Out C5×Dic5404-(C5xDic5):2C2200,22
(C5×Dic5)⋊3C2 = Dic52D5φ: C2/C1C2 ⊆ Out C5×Dic5204+(C5xDic5):3C2200,23
(C5×Dic5)⋊4C2 = C5×C5⋊D4φ: C2/C1C2 ⊆ Out C5×Dic5202(C5xDic5):4C2200,31
(C5×Dic5)⋊5C2 = D5×C20φ: trivial image402(C5xDic5):5C2200,28

Non-split extensions G=N.Q with N=C5×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic5).1C2 = C5×C5⋊C8φ: C2/C1C2 ⊆ Out C5×Dic5404(C5xDic5).1C2200,18
(C5×Dic5).2C2 = C522Q8φ: C2/C1C2 ⊆ Out C5×Dic5404-(C5xDic5).2C2200,26
(C5×Dic5).3C2 = C523C8φ: C2/C1C2 ⊆ Out C5×Dic5404(C5xDic5).3C2200,19
(C5×Dic5).4C2 = C5×Dic10φ: C2/C1C2 ⊆ Out C5×Dic5402(C5xDic5).4C2200,27

׿
×
𝔽