metabelian, supersoluble, monomial, A-group
Aliases: Dic5⋊2D5, C10.2D10, C2.2D52, C5⋊D5⋊2C4, C5⋊2(C4×D5), C52⋊8(C2×C4), (C5×Dic5)⋊3C2, (C5×C10).2C22, (C2×C5⋊D5).1C2, SmallGroup(200,23)
Series: Derived ►Chief ►Lower central ►Upper central
C52 — Dic5⋊2D5 |
Generators and relations for Dic5⋊2D5
G = < a,b,c,d | a10=c5=d2=1, b2=a5, bab-1=dad=a-1, ac=ca, bc=cb, bd=db, dcd=c-1 >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)
(1 12 6 17)(2 11 7 16)(3 20 8 15)(4 19 9 14)(5 18 10 13)
(1 3 5 7 9)(2 4 6 8 10)(11 19 17 15 13)(12 20 18 16 14)
(1 9)(2 8)(3 7)(4 6)(11 15)(12 14)(16 20)(17 19)
G:=sub<Sym(20)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20), (1,12,6,17)(2,11,7,16)(3,20,8,15)(4,19,9,14)(5,18,10,13), (1,3,5,7,9)(2,4,6,8,10)(11,19,17,15,13)(12,20,18,16,14), (1,9)(2,8)(3,7)(4,6)(11,15)(12,14)(16,20)(17,19)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20), (1,12,6,17)(2,11,7,16)(3,20,8,15)(4,19,9,14)(5,18,10,13), (1,3,5,7,9)(2,4,6,8,10)(11,19,17,15,13)(12,20,18,16,14), (1,9)(2,8)(3,7)(4,6)(11,15)(12,14)(16,20)(17,19) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20)], [(1,12,6,17),(2,11,7,16),(3,20,8,15),(4,19,9,14),(5,18,10,13)], [(1,3,5,7,9),(2,4,6,8,10),(11,19,17,15,13),(12,20,18,16,14)], [(1,9),(2,8),(3,7),(4,6),(11,15),(12,14),(16,20),(17,19)]])
G:=TransitiveGroup(20,58);
Dic5⋊2D5 is a maximal subgroup of
Dic5.4F5 Dic5.F5 C52⋊3C42 Dic5⋊F5 D52⋊C4 C2.D5≀C2 Dic10⋊D5 Dic10⋊5D5 C4×D52 Dic5.D10 D10⋊D10
Dic5⋊2D5 is a maximal quotient of
C20.29D10 C20.31D10 Dic52 C10.D20 C10.Dic10
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 20A | ··· | 20H |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 25 | 25 | 5 | 5 | 5 | 5 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | ··· | 10 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C4 | D5 | D10 | C4×D5 | D52 | Dic5⋊2D5 |
kernel | Dic5⋊2D5 | C5×Dic5 | C2×C5⋊D5 | C5⋊D5 | Dic5 | C10 | C5 | C2 | C1 |
# reps | 1 | 2 | 1 | 4 | 4 | 4 | 8 | 4 | 4 |
Matrix representation of Dic5⋊2D5 ►in GL4(𝔽41) generated by
35 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
32 | 0 | 0 | 0 |
28 | 9 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 6 | 40 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
6 | 40 | 0 | 0 |
0 | 0 | 6 | 40 |
0 | 0 | 35 | 35 |
G:=sub<GL(4,GF(41))| [35,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[32,28,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,6,1,0,0,40,0],[1,6,0,0,0,40,0,0,0,0,6,35,0,0,40,35] >;
Dic5⋊2D5 in GAP, Magma, Sage, TeX
{\rm Dic}_5\rtimes_2D_5
% in TeX
G:=Group("Dic5:2D5");
// GroupNames label
G:=SmallGroup(200,23);
// by ID
G=gap.SmallGroup(200,23);
# by ID
G:=PCGroup([5,-2,-2,-2,-5,-5,20,26,328,4004]);
// Polycyclic
G:=Group<a,b,c,d|a^10=c^5=d^2=1,b^2=a^5,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export