metabelian, supersoluble, monomial
Aliases: C5⋊2D20, Dic5⋊D5, C52⋊3D4, D10⋊2D5, C10.4D10, C2.4D52, (D5×C10)⋊2C2, C5⋊1(C5⋊D4), (C5×Dic5)⋊1C2, (C5×C10).4C22, (C2×C5⋊D5)⋊1C2, SmallGroup(200,25)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5⋊D20
G = < a,b,c | a5=b20=c2=1, bab-1=cac=a-1, cbc=b-1 >
Character table of C5⋊D20
class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 20A | 20B | 20C | 20D | |
size | 1 | 1 | 10 | 50 | 10 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 0 | 2 | 2 | -1+√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | -1-√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | -2 | 0 | 0 | -1-√5/2 | 2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D10 |
ρ9 | 2 | 2 | 0 | 0 | -2 | 2 | -1-√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ10 | 2 | -2 | 0 | 0 | 0 | 2 | -1-√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -2 | -2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | orthogonal lifted from D20 |
ρ11 | 2 | 2 | -2 | 0 | 0 | -1+√5/2 | 2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | 2 | 0 | 0 | -1-√5/2 | 2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ13 | 2 | -2 | 0 | 0 | 0 | 2 | -1+√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -2 | -2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | orthogonal lifted from D20 |
ρ14 | 2 | 2 | 0 | 0 | -2 | 2 | -1+√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | 2 | 2 | 0 | 0 | -1+√5/2 | 2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ16 | 2 | -2 | 0 | 0 | 0 | 2 | -1+√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -2 | -2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | orthogonal lifted from D20 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | -1-√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -2 | -2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | orthogonal lifted from D20 |
ρ18 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | 2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -2 | -2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | ζ53-ζ52 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | 0 | 0 | 0 | 0 | complex lifted from C5⋊D4 |
ρ19 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | 2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -2 | -2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -ζ54+ζ5 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | 0 | 0 | 0 | 0 | complex lifted from C5⋊D4 |
ρ20 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | 2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -2 | -2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -ζ53+ζ52 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | 0 | 0 | 0 | 0 | complex lifted from C5⋊D4 |
ρ21 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | 2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -2 | -2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | ζ54-ζ5 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | 0 | 0 | 0 | 0 | complex lifted from C5⋊D4 |
ρ22 | 4 | 4 | 0 | 0 | 0 | -1+√5 | -1+√5 | -1-√5 | -1-√5 | -1 | 3-√5/2 | -1 | 3+√5/2 | -1-√5 | -1+√5 | -1+√5 | -1-√5 | -1 | 3+√5/2 | 3-√5/2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D52 |
ρ23 | 4 | -4 | 0 | 0 | 0 | -1-√5 | -1-√5 | -1+√5 | -1+√5 | -1 | 3+√5/2 | -1 | 3-√5/2 | 1-√5 | 1+√5 | 1+√5 | 1-√5 | 1 | -3+√5/2 | -3-√5/2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | -1+√5 | -1+√5 | -1-√5 | -1-√5 | -1 | 3-√5/2 | -1 | 3+√5/2 | 1+√5 | 1-√5 | 1-√5 | 1+√5 | 1 | -3-√5/2 | -3+√5/2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | -1-√5 | -1+√5 | -1+√5 | -1-√5 | 3-√5/2 | -1 | 3+√5/2 | -1 | 1-√5 | 1+√5 | 1-√5 | 1+√5 | -3+√5/2 | 1 | 1 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 4 | 4 | 0 | 0 | 0 | -1-√5 | -1-√5 | -1+√5 | -1+√5 | -1 | 3+√5/2 | -1 | 3-√5/2 | -1+√5 | -1-√5 | -1-√5 | -1+√5 | -1 | 3-√5/2 | 3+√5/2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D52 |
ρ27 | 4 | 4 | 0 | 0 | 0 | -1+√5 | -1-√5 | -1-√5 | -1+√5 | 3+√5/2 | -1 | 3-√5/2 | -1 | -1-√5 | -1+√5 | -1-√5 | -1+√5 | 3+√5/2 | -1 | -1 | 3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D52 |
ρ28 | 4 | -4 | 0 | 0 | 0 | -1+√5 | -1-√5 | -1-√5 | -1+√5 | 3+√5/2 | -1 | 3-√5/2 | -1 | 1+√5 | 1-√5 | 1+√5 | 1-√5 | -3-√5/2 | 1 | 1 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 4 | 4 | 0 | 0 | 0 | -1-√5 | -1+√5 | -1+√5 | -1-√5 | 3-√5/2 | -1 | 3+√5/2 | -1 | -1+√5 | -1-√5 | -1+√5 | -1-√5 | 3-√5/2 | -1 | -1 | 3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D52 |
(1 9 17 5 13)(2 14 6 18 10)(3 11 19 7 15)(4 16 8 20 12)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)
G:=sub<Sym(20)| (1,9,17,5,13)(2,14,6,18,10)(3,11,19,7,15)(4,16,8,20,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)>;
G:=Group( (1,9,17,5,13)(2,14,6,18,10)(3,11,19,7,15)(4,16,8,20,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19) );
G=PermutationGroup([[(1,9,17,5,13),(2,14,6,18,10),(3,11,19,7,15),(4,16,8,20,12)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19)]])
G:=TransitiveGroup(20,60);
C5⋊D20 is a maximal subgroup of
D20⋊D5 D10.9D10 Dic10⋊5D5 D5×D20 Dic5.D10 D5×C5⋊D4 D10⋊D10
C5⋊D20 is a maximal quotient of C5⋊D40 C52⋊3SD16 C52⋊4SD16 C52⋊3Q16 D10⋊Dic5 C10.D20 Dic5⋊Dic5
Matrix representation of C5⋊D20 ►in GL4(𝔽41) generated by
6 | 40 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
18 | 35 | 0 | 0 |
20 | 23 | 0 | 0 |
0 | 0 | 0 | 40 |
0 | 0 | 1 | 6 |
40 | 0 | 0 | 0 |
35 | 1 | 0 | 0 |
0 | 0 | 1 | 6 |
0 | 0 | 0 | 40 |
G:=sub<GL(4,GF(41))| [6,1,0,0,40,0,0,0,0,0,1,0,0,0,0,1],[18,20,0,0,35,23,0,0,0,0,0,1,0,0,40,6],[40,35,0,0,0,1,0,0,0,0,1,0,0,0,6,40] >;
C5⋊D20 in GAP, Magma, Sage, TeX
C_5\rtimes D_{20}
% in TeX
G:=Group("C5:D20");
// GroupNames label
G:=SmallGroup(200,25);
// by ID
G=gap.SmallGroup(200,25);
# by ID
G:=PCGroup([5,-2,-2,-2,-5,-5,61,26,328,4004]);
// Polycyclic
G:=Group<a,b,c|a^5=b^20=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C5⋊D20 in TeX
Character table of C5⋊D20 in TeX