extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3×C6) = C32×Dic6 | φ: C3×C6/C32 → C2 ⊆ Aut C12 | 72 | | C12.1(C3xC6) | 216,135 |
C12.2(C3×C6) = C32×C3⋊C8 | φ: C3×C6/C32 → C2 ⊆ Aut C12 | 72 | | C12.2(C3xC6) | 216,82 |
C12.3(C3×C6) = D4×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C12 | 108 | | C12.3(C3xC6) | 216,76 |
C12.4(C3×C6) = D4×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C12 | 36 | 6 | C12.4(C3xC6) | 216,77 |
C12.5(C3×C6) = D4×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C12 | 36 | 6 | C12.5(C3xC6) | 216,78 |
C12.6(C3×C6) = Q8×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C12 | 216 | | C12.6(C3xC6) | 216,79 |
C12.7(C3×C6) = Q8×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C12 | 72 | 6 | C12.7(C3xC6) | 216,80 |
C12.8(C3×C6) = Q8×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C12 | 72 | 6 | C12.8(C3xC6) | 216,81 |
C12.9(C3×C6) = Q8×C33 | φ: C3×C6/C32 → C2 ⊆ Aut C12 | 216 | | C12.9(C3xC6) | 216,152 |
C12.10(C3×C6) = C8×He3 | central extension (φ=1) | 72 | 3 | C12.10(C3xC6) | 216,19 |
C12.11(C3×C6) = C8×3- 1+2 | central extension (φ=1) | 72 | 3 | C12.11(C3xC6) | 216,20 |
C12.12(C3×C6) = C2×C4×He3 | central extension (φ=1) | 72 | | C12.12(C3xC6) | 216,74 |
C12.13(C3×C6) = C2×C4×3- 1+2 | central extension (φ=1) | 72 | | C12.13(C3xC6) | 216,75 |