Copied to
clipboard

G = C8×3- 1+2order 216 = 23·33

Direct product of C8 and 3- 1+2

direct product, metacyclic, nilpotent (class 2), monomial, 3-elementary

Aliases: C8×3- 1+2, C72⋊C3, C92C24, C36.4C6, C32.C24, C18.2C12, C24.2C32, (C3×C24).C3, (C3×C6).4C12, C6.3(C3×C12), (C3×C12).7C6, C3.2(C3×C24), C12.11(C3×C6), C2.(C4×3- 1+2), C4.2(C2×3- 1+2), (C2×3- 1+2).2C4, (C4×3- 1+2).4C2, SmallGroup(216,20)

Series: Derived Chief Lower central Upper central

C1C3 — C8×3- 1+2
C1C2C6C12C3×C12C4×3- 1+2 — C8×3- 1+2
C1C3 — C8×3- 1+2
C1C24 — C8×3- 1+2

Generators and relations for C8×3- 1+2
 G = < a,b,c | a8=b9=c3=1, ab=ba, ac=ca, cbc-1=b4 >

3C3
3C6
3C12
3C24

Smallest permutation representation of C8×3- 1+2
On 72 points
Generators in S72
(1 21 63 36 42 66 53 10)(2 22 55 28 43 67 54 11)(3 23 56 29 44 68 46 12)(4 24 57 30 45 69 47 13)(5 25 58 31 37 70 48 14)(6 26 59 32 38 71 49 15)(7 27 60 33 39 72 50 16)(8 19 61 34 40 64 51 17)(9 20 62 35 41 65 52 18)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(2 8 5)(3 6 9)(11 17 14)(12 15 18)(19 25 22)(20 23 26)(28 34 31)(29 32 35)(37 43 40)(38 41 44)(46 49 52)(48 54 51)(55 61 58)(56 59 62)(64 70 67)(65 68 71)

G:=sub<Sym(72)| (1,21,63,36,42,66,53,10)(2,22,55,28,43,67,54,11)(3,23,56,29,44,68,46,12)(4,24,57,30,45,69,47,13)(5,25,58,31,37,70,48,14)(6,26,59,32,38,71,49,15)(7,27,60,33,39,72,50,16)(8,19,61,34,40,64,51,17)(9,20,62,35,41,65,52,18), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(46,49,52)(48,54,51)(55,61,58)(56,59,62)(64,70,67)(65,68,71)>;

G:=Group( (1,21,63,36,42,66,53,10)(2,22,55,28,43,67,54,11)(3,23,56,29,44,68,46,12)(4,24,57,30,45,69,47,13)(5,25,58,31,37,70,48,14)(6,26,59,32,38,71,49,15)(7,27,60,33,39,72,50,16)(8,19,61,34,40,64,51,17)(9,20,62,35,41,65,52,18), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(46,49,52)(48,54,51)(55,61,58)(56,59,62)(64,70,67)(65,68,71) );

G=PermutationGroup([[(1,21,63,36,42,66,53,10),(2,22,55,28,43,67,54,11),(3,23,56,29,44,68,46,12),(4,24,57,30,45,69,47,13),(5,25,58,31,37,70,48,14),(6,26,59,32,38,71,49,15),(7,27,60,33,39,72,50,16),(8,19,61,34,40,64,51,17),(9,20,62,35,41,65,52,18)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(2,8,5),(3,6,9),(11,17,14),(12,15,18),(19,25,22),(20,23,26),(28,34,31),(29,32,35),(37,43,40),(38,41,44),(46,49,52),(48,54,51),(55,61,58),(56,59,62),(64,70,67),(65,68,71)]])

C8×3- 1+2 is a maximal subgroup of   C9⋊C48  C72.C6  C72⋊C6  C722C6  D72⋊C3

88 conjugacy classes

class 1  2 3A3B3C3D4A4B6A6B6C6D8A8B8C8D9A···9F12A12B12C12D12E12F12G12H18A···18F24A···24H24I···24P36A···36L72A···72X
order12333344666688889···9121212121212121218···1824···2424···2436···3672···72
size11113311113311113···3111133333···31···13···33···33···3

88 irreducible representations

dim1111111111113333
type++
imageC1C2C3C3C4C6C6C8C12C12C24C243- 1+2C2×3- 1+2C4×3- 1+2C8×3- 1+2
kernelC8×3- 1+2C4×3- 1+2C72C3×C24C2×3- 1+2C36C3×C123- 1+2C18C3×C6C9C32C8C4C2C1
# reps116226241242482248

Matrix representation of C8×3- 1+2 in GL4(𝔽73) generated by

10000
02700
00270
00027
,
8000
0010
0008
0100
,
64000
0100
0080
00064
G:=sub<GL(4,GF(73))| [10,0,0,0,0,27,0,0,0,0,27,0,0,0,0,27],[8,0,0,0,0,0,0,1,0,1,0,0,0,0,8,0],[64,0,0,0,0,1,0,0,0,0,8,0,0,0,0,64] >;

C8×3- 1+2 in GAP, Magma, Sage, TeX

C_8\times 3_-^{1+2}
% in TeX

G:=Group("C8xES-(3,1)");
// GroupNames label

G:=SmallGroup(216,20);
// by ID

G=gap.SmallGroup(216,20);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,-3,-2,108,223,386,165]);
// Polycyclic

G:=Group<a,b,c|a^8=b^9=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C8×3- 1+2 in TeX

׿
×
𝔽