Copied to
clipboard

G = S3×C3×C12order 216 = 23·33

Direct product of C3×C12 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3×C3×C12, C6.2C62, D6.(C3×C6), C122(C3×C6), (C3×C12)⋊7C6, C31(C6×C12), (S3×C6).6C6, C6.36(S3×C6), C3310(C2×C4), (C3×C6).68D6, C327(C2×C12), (C32×C12)⋊4C2, Dic32(C3×C6), (C3×Dic3)⋊5C6, (C32×Dic3)⋊8C2, (C32×C6).17C22, C2.1(S3×C3×C6), (S3×C3×C6).3C2, (C3×C6).25(C2×C6), (C3×Dic3)(C3×C12), (C3×C12)(C32×Dic3), SmallGroup(216,136)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C3×C12
C1C3C6C3×C6C32×C6S3×C3×C6 — S3×C3×C12
C3 — S3×C3×C12
C1C3×C12

Generators and relations for S3×C3×C12
 G = < a,b,c,d | a3=b12=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 204 in 120 conjugacy classes, 66 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, C3×S3, C3×C6, C3×C6, C3×C6, C4×S3, C2×C12, C33, C3×Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C62, S3×C32, C32×C6, S3×C12, C6×C12, C32×Dic3, C32×C12, S3×C3×C6, S3×C3×C12
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C32, C12, D6, C2×C6, C3×S3, C3×C6, C4×S3, C2×C12, C3×C12, S3×C6, C62, S3×C32, S3×C12, C6×C12, S3×C3×C6, S3×C3×C12

Smallest permutation representation of S3×C3×C12
On 72 points
Generators in S72
(1 40 29)(2 41 30)(3 42 31)(4 43 32)(5 44 33)(6 45 34)(7 46 35)(8 47 36)(9 48 25)(10 37 26)(11 38 27)(12 39 28)(13 56 72)(14 57 61)(15 58 62)(16 59 63)(17 60 64)(18 49 65)(19 50 66)(20 51 67)(21 52 68)(22 53 69)(23 54 70)(24 55 71)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 48 33)(2 37 34)(3 38 35)(4 39 36)(5 40 25)(6 41 26)(7 42 27)(8 43 28)(9 44 29)(10 45 30)(11 46 31)(12 47 32)(13 64 52)(14 65 53)(15 66 54)(16 67 55)(17 68 56)(18 69 57)(19 70 58)(20 71 59)(21 72 60)(22 61 49)(23 62 50)(24 63 51)
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 61)(8 62)(9 63)(10 64)(11 65)(12 66)(13 45)(14 46)(15 47)(16 48)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 59)(26 60)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 55)(34 56)(35 57)(36 58)

G:=sub<Sym(72)| (1,40,29)(2,41,30)(3,42,31)(4,43,32)(5,44,33)(6,45,34)(7,46,35)(8,47,36)(9,48,25)(10,37,26)(11,38,27)(12,39,28)(13,56,72)(14,57,61)(15,58,62)(16,59,63)(17,60,64)(18,49,65)(19,50,66)(20,51,67)(21,52,68)(22,53,69)(23,54,70)(24,55,71), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,48,33)(2,37,34)(3,38,35)(4,39,36)(5,40,25)(6,41,26)(7,42,27)(8,43,28)(9,44,29)(10,45,30)(11,46,31)(12,47,32)(13,64,52)(14,65,53)(15,66,54)(16,67,55)(17,68,56)(18,69,57)(19,70,58)(20,71,59)(21,72,60)(22,61,49)(23,62,50)(24,63,51), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,59)(26,60)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)>;

G:=Group( (1,40,29)(2,41,30)(3,42,31)(4,43,32)(5,44,33)(6,45,34)(7,46,35)(8,47,36)(9,48,25)(10,37,26)(11,38,27)(12,39,28)(13,56,72)(14,57,61)(15,58,62)(16,59,63)(17,60,64)(18,49,65)(19,50,66)(20,51,67)(21,52,68)(22,53,69)(23,54,70)(24,55,71), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,48,33)(2,37,34)(3,38,35)(4,39,36)(5,40,25)(6,41,26)(7,42,27)(8,43,28)(9,44,29)(10,45,30)(11,46,31)(12,47,32)(13,64,52)(14,65,53)(15,66,54)(16,67,55)(17,68,56)(18,69,57)(19,70,58)(20,71,59)(21,72,60)(22,61,49)(23,62,50)(24,63,51), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,59)(26,60)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58) );

G=PermutationGroup([[(1,40,29),(2,41,30),(3,42,31),(4,43,32),(5,44,33),(6,45,34),(7,46,35),(8,47,36),(9,48,25),(10,37,26),(11,38,27),(12,39,28),(13,56,72),(14,57,61),(15,58,62),(16,59,63),(17,60,64),(18,49,65),(19,50,66),(20,51,67),(21,52,68),(22,53,69),(23,54,70),(24,55,71)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,48,33),(2,37,34),(3,38,35),(4,39,36),(5,40,25),(6,41,26),(7,42,27),(8,43,28),(9,44,29),(10,45,30),(11,46,31),(12,47,32),(13,64,52),(14,65,53),(15,66,54),(16,67,55),(17,68,56),(18,69,57),(19,70,58),(20,71,59),(21,72,60),(22,61,49),(23,62,50),(24,63,51)], [(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,61),(8,62),(9,63),(10,64),(11,65),(12,66),(13,45),(14,46),(15,47),(16,48),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,59),(26,60),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,55),(34,56),(35,57),(36,58)]])

S3×C3×C12 is a maximal subgroup of   C337M4(2)  C12.73S32  C12.57S32  C12.58S32

108 conjugacy classes

class 1 2A2B2C3A···3H3I···3Q4A4B4C4D6A···6H6I···6Q6R···6AG12A···12P12Q···12AH12AI···12AX
order12223···33···344446···66···66···612···1212···1212···12
size11331···12···211331···12···23···31···12···23···3

108 irreducible representations

dim1111111111222222
type++++++
imageC1C2C2C2C3C4C6C6C6C12S3D6C3×S3C4×S3S3×C6S3×C12
kernelS3×C3×C12C32×Dic3C32×C12S3×C3×C6S3×C12S3×C32C3×Dic3C3×C12S3×C6C3×S3C3×C12C3×C6C12C32C6C3
# reps111184888321182816

Matrix representation of S3×C3×C12 in GL3(𝔽13) generated by

100
030
003
,
300
080
008
,
100
033
009
,
100
010
0212
G:=sub<GL(3,GF(13))| [1,0,0,0,3,0,0,0,3],[3,0,0,0,8,0,0,0,8],[1,0,0,0,3,0,0,3,9],[1,0,0,0,1,2,0,0,12] >;

S3×C3×C12 in GAP, Magma, Sage, TeX

S_3\times C_3\times C_{12}
% in TeX

G:=Group("S3xC3xC12");
// GroupNames label

G:=SmallGroup(216,136);
// by ID

G=gap.SmallGroup(216,136);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-2,-3,223,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽