Copied to
clipboard

G = D4×3- 1+2order 216 = 23·33

Direct product of D4 and 3- 1+2

direct product, metacyclic, nilpotent (class 2), monomial

Aliases: D4×3- 1+2, C363C6, C62.1C6, C6.15C62, (D4×C9)⋊C3, C93(C3×D4), (C2×C18)⋊5C6, C32.(C3×D4), (C3×C12).3C6, C18.7(C2×C6), C12.5(C3×C6), (D4×C32).C3, C3.3(D4×C32), C4⋊(C2×3- 1+2), (C3×D4).3C32, (C4×3- 1+2)⋊3C2, C223(C2×3- 1+2), (C22×3- 1+2)⋊3C2, C2.2(C22×3- 1+2), (C2×3- 1+2).7C22, (C2×C6).8(C3×C6), (C3×C6).14(C2×C6), SmallGroup(216,78)

Series: Derived Chief Lower central Upper central

C1C6 — D4×3- 1+2
C1C3C6C3×C6C2×3- 1+2C22×3- 1+2 — D4×3- 1+2
C1C6 — D4×3- 1+2
C1C6 — D4×3- 1+2

Generators and relations for D4×3- 1+2
 G = < a,b,c,d | a4=b2=c9=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

Subgroups: 100 in 64 conjugacy classes, 42 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, D4, C9, C32, C12, C12, C2×C6, C2×C6, C18, C18, C3×C6, C3×C6, C3×D4, C3×D4, 3- 1+2, C36, C2×C18, C3×C12, C62, C2×3- 1+2, C2×3- 1+2, D4×C9, D4×C32, C4×3- 1+2, C22×3- 1+2, D4×3- 1+2
Quotients: C1, C2, C3, C22, C6, D4, C32, C2×C6, C3×C6, C3×D4, 3- 1+2, C62, C2×3- 1+2, D4×C32, C22×3- 1+2, D4×3- 1+2

Smallest permutation representation of D4×3- 1+2
On 36 points
Generators in S36
(1 34 27 18)(2 35 19 10)(3 36 20 11)(4 28 21 12)(5 29 22 13)(6 30 23 14)(7 31 24 15)(8 32 25 16)(9 33 26 17)
(10 35)(11 36)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 25 22)(20 23 26)(29 35 32)(30 33 36)

G:=sub<Sym(36)| (1,34,27,18)(2,35,19,10)(3,36,20,11)(4,28,21,12)(5,29,22,13)(6,30,23,14)(7,31,24,15)(8,32,25,16)(9,33,26,17), (10,35)(11,36)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36)>;

G:=Group( (1,34,27,18)(2,35,19,10)(3,36,20,11)(4,28,21,12)(5,29,22,13)(6,30,23,14)(7,31,24,15)(8,32,25,16)(9,33,26,17), (10,35)(11,36)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36) );

G=PermutationGroup([[(1,34,27,18),(2,35,19,10),(3,36,20,11),(4,28,21,12),(5,29,22,13),(6,30,23,14),(7,31,24,15),(8,32,25,16),(9,33,26,17)], [(10,35),(11,36),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,25,22),(20,23,26),(29,35,32),(30,33,36)]])

D4×3- 1+2 is a maximal subgroup of   Dic18⋊C6  D36⋊C6  Dic182C6

55 conjugacy classes

class 1 2A2B2C3A3B3C3D 4 6A6B6C6D6E6F6G6H6I6J6K6L9A···9F12A12B12C12D18A···18F18G···18R36A···36F
order1222333346666666666669···91212121218···1818···1836···36
size1122113321122223366663···322663···36···66···6

55 irreducible representations

dim1111111112223336
type++++
imageC1C2C2C3C3C6C6C6C6D4C3×D4C3×D43- 1+2C2×3- 1+2C2×3- 1+2D4×3- 1+2
kernelD4×3- 1+2C4×3- 1+2C22×3- 1+2D4×C9D4×C32C36C2×C18C3×C12C623- 1+2C9C32D4C4C22C1
# reps11262612241622242

Matrix representation of D4×3- 1+2 in GL5(𝔽37)

362000
361000
003600
000360
000036
,
10000
136000
00100
00010
00001
,
100000
010000
00010
000026
00100
,
10000
01000
00100
000260
000010

G:=sub<GL(5,GF(37))| [36,36,0,0,0,2,1,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36],[1,1,0,0,0,0,36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[10,0,0,0,0,0,10,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,26,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,26,0,0,0,0,0,10] >;

D4×3- 1+2 in GAP, Magma, Sage, TeX

D_4\times 3_-^{1+2}
% in TeX

G:=Group("D4xES-(3,1)");
// GroupNames label

G:=SmallGroup(216,78);
// by ID

G=gap.SmallGroup(216,78);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-2,-3,457,338,519]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^9=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

׿
×
𝔽