Extensions 1→N→G→Q→1 with N=C3×D4 and Q=C10

Direct product G=N×Q with N=C3×D4 and Q=C10
dρLabelID
D4×C30120D4xC30240,186

Semidirect products G=N:Q with N=C3×D4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1C10 = C5×D4⋊S3φ: C10/C5C2 ⊆ Out C3×D41204(C3xD4):1C10240,60
(C3×D4)⋊2C10 = C5×S3×D4φ: C10/C5C2 ⊆ Out C3×D4604(C3xD4):2C10240,169
(C3×D4)⋊3C10 = C5×D42S3φ: C10/C5C2 ⊆ Out C3×D41204(C3xD4):3C10240,170
(C3×D4)⋊4C10 = C15×D8φ: C10/C5C2 ⊆ Out C3×D41202(C3xD4):4C10240,86
(C3×D4)⋊5C10 = C15×C4○D4φ: trivial image1202(C3xD4):5C10240,188

Non-split extensions G=N.Q with N=C3×D4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×D4).1C10 = C5×D4.S3φ: C10/C5C2 ⊆ Out C3×D41204(C3xD4).1C10240,61
(C3×D4).2C10 = C15×SD16φ: C10/C5C2 ⊆ Out C3×D41202(C3xD4).2C10240,87

׿
×
𝔽