Copied to
clipboard

G = C15×C4○D4order 240 = 24·3·5

Direct product of C15 and C4○D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C15×C4○D4, D42C30, Q83C30, C30.60C23, C60.81C22, (C5×D4)C60, (C5×Q8)C60, (C2×C20)⋊7C6, (C2×C4)⋊3C30, C60(D4×C15), (C5×D4)⋊5C6, C60(Q8×C15), (C5×Q8)⋊7C6, (C2×C60)⋊15C2, (C2×C12)⋊7C10, (C3×D4)⋊5C10, C4.5(C2×C30), (C3×Q8)⋊5C10, C22.(C2×C30), (D4×C15)⋊11C2, C20.21(C2×C6), (Q8×C15)⋊11C2, C12.21(C2×C10), C2.3(C22×C30), (C2×C30).21C22, C6.13(C22×C10), C10.13(C22×C6), (C2×C10).2(C2×C6), (C2×C6).2(C2×C10), SmallGroup(240,188)

Series: Derived Chief Lower central Upper central

C1C2 — C15×C4○D4
C1C2C10C30C2×C30D4×C15 — C15×C4○D4
C1C2 — C15×C4○D4
C1C60 — C15×C4○D4

Generators and relations for C15×C4○D4
 G = < a,b,c,d | a15=b4=d2=1, c2=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c >

Subgroups: 92 in 80 conjugacy classes, 68 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C2×C4, D4, Q8, C10, C10, C12, C12, C2×C6, C15, C4○D4, C20, C20, C2×C10, C2×C12, C3×D4, C3×Q8, C30, C30, C2×C20, C5×D4, C5×Q8, C3×C4○D4, C60, C60, C2×C30, C5×C4○D4, C2×C60, D4×C15, Q8×C15, C15×C4○D4
Quotients: C1, C2, C3, C22, C5, C6, C23, C10, C2×C6, C15, C4○D4, C2×C10, C22×C6, C30, C22×C10, C3×C4○D4, C2×C30, C5×C4○D4, C22×C30, C15×C4○D4

Smallest permutation representation of C15×C4○D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 75 33 29)(2 61 34 30)(3 62 35 16)(4 63 36 17)(5 64 37 18)(6 65 38 19)(7 66 39 20)(8 67 40 21)(9 68 41 22)(10 69 42 23)(11 70 43 24)(12 71 44 25)(13 72 45 26)(14 73 31 27)(15 74 32 28)(46 119 105 77)(47 120 91 78)(48 106 92 79)(49 107 93 80)(50 108 94 81)(51 109 95 82)(52 110 96 83)(53 111 97 84)(54 112 98 85)(55 113 99 86)(56 114 100 87)(57 115 101 88)(58 116 102 89)(59 117 103 90)(60 118 104 76)
(1 29 33 75)(2 30 34 61)(3 16 35 62)(4 17 36 63)(5 18 37 64)(6 19 38 65)(7 20 39 66)(8 21 40 67)(9 22 41 68)(10 23 42 69)(11 24 43 70)(12 25 44 71)(13 26 45 72)(14 27 31 73)(15 28 32 74)(46 119 105 77)(47 120 91 78)(48 106 92 79)(49 107 93 80)(50 108 94 81)(51 109 95 82)(52 110 96 83)(53 111 97 84)(54 112 98 85)(55 113 99 86)(56 114 100 87)(57 115 101 88)(58 116 102 89)(59 117 103 90)(60 118 104 76)
(1 59)(2 60)(3 46)(4 47)(5 48)(6 49)(7 50)(8 51)(9 52)(10 53)(11 54)(12 55)(13 56)(14 57)(15 58)(16 77)(17 78)(18 79)(19 80)(20 81)(21 82)(22 83)(23 84)(24 85)(25 86)(26 87)(27 88)(28 89)(29 90)(30 76)(31 101)(32 102)(33 103)(34 104)(35 105)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 98)(44 99)(45 100)(61 118)(62 119)(63 120)(64 106)(65 107)(66 108)(67 109)(68 110)(69 111)(70 112)(71 113)(72 114)(73 115)(74 116)(75 117)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,75,33,29)(2,61,34,30)(3,62,35,16)(4,63,36,17)(5,64,37,18)(6,65,38,19)(7,66,39,20)(8,67,40,21)(9,68,41,22)(10,69,42,23)(11,70,43,24)(12,71,44,25)(13,72,45,26)(14,73,31,27)(15,74,32,28)(46,119,105,77)(47,120,91,78)(48,106,92,79)(49,107,93,80)(50,108,94,81)(51,109,95,82)(52,110,96,83)(53,111,97,84)(54,112,98,85)(55,113,99,86)(56,114,100,87)(57,115,101,88)(58,116,102,89)(59,117,103,90)(60,118,104,76), (1,29,33,75)(2,30,34,61)(3,16,35,62)(4,17,36,63)(5,18,37,64)(6,19,38,65)(7,20,39,66)(8,21,40,67)(9,22,41,68)(10,23,42,69)(11,24,43,70)(12,25,44,71)(13,26,45,72)(14,27,31,73)(15,28,32,74)(46,119,105,77)(47,120,91,78)(48,106,92,79)(49,107,93,80)(50,108,94,81)(51,109,95,82)(52,110,96,83)(53,111,97,84)(54,112,98,85)(55,113,99,86)(56,114,100,87)(57,115,101,88)(58,116,102,89)(59,117,103,90)(60,118,104,76), (1,59)(2,60)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,77)(17,78)(18,79)(19,80)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,76)(31,101)(32,102)(33,103)(34,104)(35,105)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(61,118)(62,119)(63,120)(64,106)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,113)(72,114)(73,115)(74,116)(75,117)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,75,33,29)(2,61,34,30)(3,62,35,16)(4,63,36,17)(5,64,37,18)(6,65,38,19)(7,66,39,20)(8,67,40,21)(9,68,41,22)(10,69,42,23)(11,70,43,24)(12,71,44,25)(13,72,45,26)(14,73,31,27)(15,74,32,28)(46,119,105,77)(47,120,91,78)(48,106,92,79)(49,107,93,80)(50,108,94,81)(51,109,95,82)(52,110,96,83)(53,111,97,84)(54,112,98,85)(55,113,99,86)(56,114,100,87)(57,115,101,88)(58,116,102,89)(59,117,103,90)(60,118,104,76), (1,29,33,75)(2,30,34,61)(3,16,35,62)(4,17,36,63)(5,18,37,64)(6,19,38,65)(7,20,39,66)(8,21,40,67)(9,22,41,68)(10,23,42,69)(11,24,43,70)(12,25,44,71)(13,26,45,72)(14,27,31,73)(15,28,32,74)(46,119,105,77)(47,120,91,78)(48,106,92,79)(49,107,93,80)(50,108,94,81)(51,109,95,82)(52,110,96,83)(53,111,97,84)(54,112,98,85)(55,113,99,86)(56,114,100,87)(57,115,101,88)(58,116,102,89)(59,117,103,90)(60,118,104,76), (1,59)(2,60)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,77)(17,78)(18,79)(19,80)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,76)(31,101)(32,102)(33,103)(34,104)(35,105)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(61,118)(62,119)(63,120)(64,106)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,113)(72,114)(73,115)(74,116)(75,117) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,75,33,29),(2,61,34,30),(3,62,35,16),(4,63,36,17),(5,64,37,18),(6,65,38,19),(7,66,39,20),(8,67,40,21),(9,68,41,22),(10,69,42,23),(11,70,43,24),(12,71,44,25),(13,72,45,26),(14,73,31,27),(15,74,32,28),(46,119,105,77),(47,120,91,78),(48,106,92,79),(49,107,93,80),(50,108,94,81),(51,109,95,82),(52,110,96,83),(53,111,97,84),(54,112,98,85),(55,113,99,86),(56,114,100,87),(57,115,101,88),(58,116,102,89),(59,117,103,90),(60,118,104,76)], [(1,29,33,75),(2,30,34,61),(3,16,35,62),(4,17,36,63),(5,18,37,64),(6,19,38,65),(7,20,39,66),(8,21,40,67),(9,22,41,68),(10,23,42,69),(11,24,43,70),(12,25,44,71),(13,26,45,72),(14,27,31,73),(15,28,32,74),(46,119,105,77),(47,120,91,78),(48,106,92,79),(49,107,93,80),(50,108,94,81),(51,109,95,82),(52,110,96,83),(53,111,97,84),(54,112,98,85),(55,113,99,86),(56,114,100,87),(57,115,101,88),(58,116,102,89),(59,117,103,90),(60,118,104,76)], [(1,59),(2,60),(3,46),(4,47),(5,48),(6,49),(7,50),(8,51),(9,52),(10,53),(11,54),(12,55),(13,56),(14,57),(15,58),(16,77),(17,78),(18,79),(19,80),(20,81),(21,82),(22,83),(23,84),(24,85),(25,86),(26,87),(27,88),(28,89),(29,90),(30,76),(31,101),(32,102),(33,103),(34,104),(35,105),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,98),(44,99),(45,100),(61,118),(62,119),(63,120),(64,106),(65,107),(66,108),(67,109),(68,110),(69,111),(70,112),(71,113),(72,114),(73,115),(74,116),(75,117)]])

C15×C4○D4 is a maximal subgroup of   Q83Dic15  D4.Dic15  D4⋊D30  D4.8D30  D4.9D30  D48D30  D4.10D30
C15×C4○D4 is a maximal quotient of   D4×C60  Q8×C60

150 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E5A5B5C5D6A6B6C···6H10A10B10C10D10E···10P12A12B12C12D12E···12J15A···15H20A···20H20I···20T30A···30H30I···30AF60A···60P60Q···60AN
order1222233444445555666···61010101010···101212121212···1215···1520···2020···2030···3030···3060···6060···60
size1122211112221111112···211112···211112···21···11···12···21···12···21···12···2

150 irreducible representations

dim11111111111111112222
type++++
imageC1C2C2C2C3C5C6C6C6C10C10C10C15C30C30C30C4○D4C3×C4○D4C5×C4○D4C15×C4○D4
kernelC15×C4○D4C2×C60D4×C15Q8×C15C5×C4○D4C3×C4○D4C2×C20C5×D4C5×Q8C2×C12C3×D4C3×Q8C4○D4C2×C4D4Q8C15C5C3C1
# reps1331246621212482424824816

Matrix representation of C15×C4○D4 in GL3(𝔽61) generated by

1300
0580
0058
,
100
0500
0050
,
6000
01111
0050
,
6000
01111
03950
G:=sub<GL(3,GF(61))| [13,0,0,0,58,0,0,0,58],[1,0,0,0,50,0,0,0,50],[60,0,0,0,11,0,0,11,50],[60,0,0,0,11,39,0,11,50] >;

C15×C4○D4 in GAP, Magma, Sage, TeX

C_{15}\times C_4\circ D_4
% in TeX

G:=Group("C15xC4oD4");
// GroupNames label

G:=SmallGroup(240,188);
// by ID

G=gap.SmallGroup(240,188);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-5,-2,1465,554]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^4=d^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations

׿
×
𝔽