Copied to
clipboard

G = C15×SD16order 240 = 24·3·5

Direct product of C15 and SD16

direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary

Aliases: C15×SD16, C82C30, C406C6, D4.C30, C246C10, Q82C30, C12014C2, C30.55D4, C60.78C22, (C5×Q8)⋊6C6, C4.2(C2×C30), (C3×Q8)⋊4C10, (C5×D4).2C6, C2.4(D4×C15), C6.15(C5×D4), C20.18(C2×C6), (Q8×C15)⋊10C2, (D4×C15).4C2, (C3×D4).2C10, C10.15(C3×D4), C12.18(C2×C10), SmallGroup(240,87)

Series: Derived Chief Lower central Upper central

C1C4 — C15×SD16
C1C2C4C20C60Q8×C15 — C15×SD16
C1C2C4 — C15×SD16
C1C30C60 — C15×SD16

Generators and relations for C15×SD16
 G = < a,b,c | a15=b8=c2=1, ab=ba, ac=ca, cbc=b3 >

4C2
2C4
2C22
4C6
4C10
2C2×C6
2C12
2C2×C10
2C20
4C30
2C2×C30
2C60

Smallest permutation representation of C15×SD16
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 99 50 79 33 27 108 71)(2 100 51 80 34 28 109 72)(3 101 52 81 35 29 110 73)(4 102 53 82 36 30 111 74)(5 103 54 83 37 16 112 75)(6 104 55 84 38 17 113 61)(7 105 56 85 39 18 114 62)(8 91 57 86 40 19 115 63)(9 92 58 87 41 20 116 64)(10 93 59 88 42 21 117 65)(11 94 60 89 43 22 118 66)(12 95 46 90 44 23 119 67)(13 96 47 76 45 24 120 68)(14 97 48 77 31 25 106 69)(15 98 49 78 32 26 107 70)
(16 75)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(28 72)(29 73)(30 74)(46 119)(47 120)(48 106)(49 107)(50 108)(51 109)(52 110)(53 111)(54 112)(55 113)(56 114)(57 115)(58 116)(59 117)(60 118)(76 96)(77 97)(78 98)(79 99)(80 100)(81 101)(82 102)(83 103)(84 104)(85 105)(86 91)(87 92)(88 93)(89 94)(90 95)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,99,50,79,33,27,108,71)(2,100,51,80,34,28,109,72)(3,101,52,81,35,29,110,73)(4,102,53,82,36,30,111,74)(5,103,54,83,37,16,112,75)(6,104,55,84,38,17,113,61)(7,105,56,85,39,18,114,62)(8,91,57,86,40,19,115,63)(9,92,58,87,41,20,116,64)(10,93,59,88,42,21,117,65)(11,94,60,89,43,22,118,66)(12,95,46,90,44,23,119,67)(13,96,47,76,45,24,120,68)(14,97,48,77,31,25,106,69)(15,98,49,78,32,26,107,70), (16,75)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(46,119)(47,120)(48,106)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,113)(56,114)(57,115)(58,116)(59,117)(60,118)(76,96)(77,97)(78,98)(79,99)(80,100)(81,101)(82,102)(83,103)(84,104)(85,105)(86,91)(87,92)(88,93)(89,94)(90,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,99,50,79,33,27,108,71)(2,100,51,80,34,28,109,72)(3,101,52,81,35,29,110,73)(4,102,53,82,36,30,111,74)(5,103,54,83,37,16,112,75)(6,104,55,84,38,17,113,61)(7,105,56,85,39,18,114,62)(8,91,57,86,40,19,115,63)(9,92,58,87,41,20,116,64)(10,93,59,88,42,21,117,65)(11,94,60,89,43,22,118,66)(12,95,46,90,44,23,119,67)(13,96,47,76,45,24,120,68)(14,97,48,77,31,25,106,69)(15,98,49,78,32,26,107,70), (16,75)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(46,119)(47,120)(48,106)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,113)(56,114)(57,115)(58,116)(59,117)(60,118)(76,96)(77,97)(78,98)(79,99)(80,100)(81,101)(82,102)(83,103)(84,104)(85,105)(86,91)(87,92)(88,93)(89,94)(90,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,99,50,79,33,27,108,71),(2,100,51,80,34,28,109,72),(3,101,52,81,35,29,110,73),(4,102,53,82,36,30,111,74),(5,103,54,83,37,16,112,75),(6,104,55,84,38,17,113,61),(7,105,56,85,39,18,114,62),(8,91,57,86,40,19,115,63),(9,92,58,87,41,20,116,64),(10,93,59,88,42,21,117,65),(11,94,60,89,43,22,118,66),(12,95,46,90,44,23,119,67),(13,96,47,76,45,24,120,68),(14,97,48,77,31,25,106,69),(15,98,49,78,32,26,107,70)], [(16,75),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(28,72),(29,73),(30,74),(46,119),(47,120),(48,106),(49,107),(50,108),(51,109),(52,110),(53,111),(54,112),(55,113),(56,114),(57,115),(58,116),(59,117),(60,118),(76,96),(77,97),(78,98),(79,99),(80,100),(81,101),(82,102),(83,103),(84,104),(85,105),(86,91),(87,92),(88,93),(89,94),(90,95)]])

C15×SD16 is a maximal subgroup of   Q83D30  SD16⋊D15  D4.5D30

105 conjugacy classes

class 1 2A2B3A3B4A4B5A5B5C5D6A6B6C6D8A8B10A10B10C10D10E10F10G10H12A12B12C12D15A···15H20A20B20C20D20E20F20G20H24A24B24C24D30A···30H30I···30P40A···40H60A···60H60I···60P120A···120P
order1223344555566668810101010101010101212121215···1520202020202020202424242430···3030···3040···4060···6060···60120···120
size114112411111144221111444422441···12222444422221···14···42···22···24···42···2

105 irreducible representations

dim111111111111111122222222
type+++++
imageC1C2C2C2C3C5C6C6C6C10C10C10C15C30C30C30D4SD16C3×D4C5×D4C3×SD16C5×SD16D4×C15C15×SD16
kernelC15×SD16C120D4×C15Q8×C15C5×SD16C3×SD16C40C5×D4C5×Q8C24C3×D4C3×Q8SD16C8D4Q8C30C15C10C6C5C3C2C1
# reps1111242224448888122448816

Matrix representation of C15×SD16 in GL3(𝔽241) generated by

22500
0980
0098
,
24000
00203
019203
,
24000
010
01240
G:=sub<GL(3,GF(241))| [225,0,0,0,98,0,0,0,98],[240,0,0,0,0,19,0,203,203],[240,0,0,0,1,1,0,0,240] >;

C15×SD16 in GAP, Magma, Sage, TeX

C_{15}\times {\rm SD}_{16}
% in TeX

G:=Group("C15xSD16");
// GroupNames label

G:=SmallGroup(240,87);
// by ID

G=gap.SmallGroup(240,87);
# by ID

G:=PCGroup([6,-2,-2,-3,-5,-2,-2,720,745,5404,2710,88]);
// Polycyclic

G:=Group<a,b,c|a^15=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations

Export

Subgroup lattice of C15×SD16 in TeX

׿
×
𝔽