Extensions 1→N→G→Q→1 with N=C5×Dic3 and Q=C4

Direct product G=N×Q with N=C5×Dic3 and Q=C4
dρLabelID
Dic3×C20240Dic3xC20240,56

Semidirect products G=N:Q with N=C5×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×Dic3)⋊1C4 = Dic3×F5φ: C4/C1C4 ⊆ Out C5×Dic3608-(C5xDic3):1C4240,95
(C5×Dic3)⋊2C4 = Dic3⋊F5φ: C4/C1C4 ⊆ Out C5×Dic3608-(C5xDic3):2C4240,97
(C5×Dic3)⋊3C4 = Dic3×Dic5φ: C4/C2C2 ⊆ Out C5×Dic3240(C5xDic3):3C4240,25
(C5×Dic3)⋊4C4 = C6.Dic10φ: C4/C2C2 ⊆ Out C5×Dic3240(C5xDic3):4C4240,31
(C5×Dic3)⋊5C4 = C5×Dic3⋊C4φ: C4/C2C2 ⊆ Out C5×Dic3240(C5xDic3):5C4240,57

Non-split extensions G=N.Q with N=C5×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×Dic3).1C4 = D15⋊C8φ: C4/C1C4 ⊆ Out C5×Dic31208+(C5xDic3).1C4240,99
(C5×Dic3).2C4 = Dic3.F5φ: C4/C1C4 ⊆ Out C5×Dic31208+(C5xDic3).2C4240,101
(C5×Dic3).3C4 = S3×C52C8φ: C4/C2C2 ⊆ Out C5×Dic31204(C5xDic3).3C4240,8
(C5×Dic3).4C4 = D6.Dic5φ: C4/C2C2 ⊆ Out C5×Dic31204(C5xDic3).4C4240,11
(C5×Dic3).5C4 = C5×C8⋊S3φ: C4/C2C2 ⊆ Out C5×Dic31202(C5xDic3).5C4240,50
(C5×Dic3).6C4 = S3×C40φ: trivial image1202(C5xDic3).6C4240,49

׿
×
𝔽