Copied to
clipboard

G = D6.Dic5order 240 = 24·3·5

The non-split extension by D6 of Dic5 acting via Dic5/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6.Dic5, C20.33D6, C156M4(2), C12.33D10, Dic3.Dic5, C60.33C22, C52C84S3, C55(C8⋊S3), (C4×S3).2D5, C153C812C2, C4.26(S3×D5), (S3×C20).3C2, (S3×C10).4C4, C10.18(C4×S3), C30.26(C2×C4), C31(C4.Dic5), C2.3(S3×Dic5), C6.2(C2×Dic5), (C5×Dic3).4C4, (C3×C52C8)⋊6C2, SmallGroup(240,11)

Series: Derived Chief Lower central Upper central

C1C30 — D6.Dic5
C1C5C15C30C60C3×C52C8 — D6.Dic5
C15C30 — D6.Dic5
C1C4

Generators and relations for D6.Dic5
 G = < a,b,c,d | a6=b2=1, c10=a3, d2=c5, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=c9 >

6C2
3C22
3C4
2S3
6C10
3C2×C4
5C8
15C8
3C20
3C2×C10
2C5×S3
15M4(2)
5C24
5C3⋊C8
3C52C8
3C2×C20
5C8⋊S3
3C4.Dic5

Smallest permutation representation of D6.Dic5
On 120 points
Generators in S120
(1 53 85 11 43 95)(2 54 86 12 44 96)(3 55 87 13 45 97)(4 56 88 14 46 98)(5 57 89 15 47 99)(6 58 90 16 48 100)(7 59 91 17 49 81)(8 60 92 18 50 82)(9 41 93 19 51 83)(10 42 94 20 52 84)(21 119 64 31 109 74)(22 120 65 32 110 75)(23 101 66 33 111 76)(24 102 67 34 112 77)(25 103 68 35 113 78)(26 104 69 36 114 79)(27 105 70 37 115 80)(28 106 71 38 116 61)(29 107 72 39 117 62)(30 108 73 40 118 63)
(1 95)(2 96)(3 97)(4 98)(5 99)(6 100)(7 81)(8 82)(9 83)(10 84)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 91)(18 92)(19 93)(20 94)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 106)(62 107)(63 108)(64 109)(65 110)(66 111)(67 112)(68 113)(69 114)(70 115)(71 116)(72 117)(73 118)(74 119)(75 120)(76 101)(77 102)(78 103)(79 104)(80 105)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 73 6 78 11 63 16 68)(2 62 7 67 12 72 17 77)(3 71 8 76 13 61 18 66)(4 80 9 65 14 70 19 75)(5 69 10 74 15 79 20 64)(21 47 26 52 31 57 36 42)(22 56 27 41 32 46 37 51)(23 45 28 50 33 55 38 60)(24 54 29 59 34 44 39 49)(25 43 30 48 35 53 40 58)(81 102 86 107 91 112 96 117)(82 111 87 116 92 101 97 106)(83 120 88 105 93 110 98 115)(84 109 89 114 94 119 99 104)(85 118 90 103 95 108 100 113)

G:=sub<Sym(120)| (1,53,85,11,43,95)(2,54,86,12,44,96)(3,55,87,13,45,97)(4,56,88,14,46,98)(5,57,89,15,47,99)(6,58,90,16,48,100)(7,59,91,17,49,81)(8,60,92,18,50,82)(9,41,93,19,51,83)(10,42,94,20,52,84)(21,119,64,31,109,74)(22,120,65,32,110,75)(23,101,66,33,111,76)(24,102,67,34,112,77)(25,103,68,35,113,78)(26,104,69,36,114,79)(27,105,70,37,115,80)(28,106,71,38,116,61)(29,107,72,39,117,62)(30,108,73,40,118,63), (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,81)(8,82)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,106)(62,107)(63,108)(64,109)(65,110)(66,111)(67,112)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,101)(77,102)(78,103)(79,104)(80,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,73,6,78,11,63,16,68)(2,62,7,67,12,72,17,77)(3,71,8,76,13,61,18,66)(4,80,9,65,14,70,19,75)(5,69,10,74,15,79,20,64)(21,47,26,52,31,57,36,42)(22,56,27,41,32,46,37,51)(23,45,28,50,33,55,38,60)(24,54,29,59,34,44,39,49)(25,43,30,48,35,53,40,58)(81,102,86,107,91,112,96,117)(82,111,87,116,92,101,97,106)(83,120,88,105,93,110,98,115)(84,109,89,114,94,119,99,104)(85,118,90,103,95,108,100,113)>;

G:=Group( (1,53,85,11,43,95)(2,54,86,12,44,96)(3,55,87,13,45,97)(4,56,88,14,46,98)(5,57,89,15,47,99)(6,58,90,16,48,100)(7,59,91,17,49,81)(8,60,92,18,50,82)(9,41,93,19,51,83)(10,42,94,20,52,84)(21,119,64,31,109,74)(22,120,65,32,110,75)(23,101,66,33,111,76)(24,102,67,34,112,77)(25,103,68,35,113,78)(26,104,69,36,114,79)(27,105,70,37,115,80)(28,106,71,38,116,61)(29,107,72,39,117,62)(30,108,73,40,118,63), (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,81)(8,82)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,106)(62,107)(63,108)(64,109)(65,110)(66,111)(67,112)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,101)(77,102)(78,103)(79,104)(80,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,73,6,78,11,63,16,68)(2,62,7,67,12,72,17,77)(3,71,8,76,13,61,18,66)(4,80,9,65,14,70,19,75)(5,69,10,74,15,79,20,64)(21,47,26,52,31,57,36,42)(22,56,27,41,32,46,37,51)(23,45,28,50,33,55,38,60)(24,54,29,59,34,44,39,49)(25,43,30,48,35,53,40,58)(81,102,86,107,91,112,96,117)(82,111,87,116,92,101,97,106)(83,120,88,105,93,110,98,115)(84,109,89,114,94,119,99,104)(85,118,90,103,95,108,100,113) );

G=PermutationGroup([[(1,53,85,11,43,95),(2,54,86,12,44,96),(3,55,87,13,45,97),(4,56,88,14,46,98),(5,57,89,15,47,99),(6,58,90,16,48,100),(7,59,91,17,49,81),(8,60,92,18,50,82),(9,41,93,19,51,83),(10,42,94,20,52,84),(21,119,64,31,109,74),(22,120,65,32,110,75),(23,101,66,33,111,76),(24,102,67,34,112,77),(25,103,68,35,113,78),(26,104,69,36,114,79),(27,105,70,37,115,80),(28,106,71,38,116,61),(29,107,72,39,117,62),(30,108,73,40,118,63)], [(1,95),(2,96),(3,97),(4,98),(5,99),(6,100),(7,81),(8,82),(9,83),(10,84),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,91),(18,92),(19,93),(20,94),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,106),(62,107),(63,108),(64,109),(65,110),(66,111),(67,112),(68,113),(69,114),(70,115),(71,116),(72,117),(73,118),(74,119),(75,120),(76,101),(77,102),(78,103),(79,104),(80,105)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,73,6,78,11,63,16,68),(2,62,7,67,12,72,17,77),(3,71,8,76,13,61,18,66),(4,80,9,65,14,70,19,75),(5,69,10,74,15,79,20,64),(21,47,26,52,31,57,36,42),(22,56,27,41,32,46,37,51),(23,45,28,50,33,55,38,60),(24,54,29,59,34,44,39,49),(25,43,30,48,35,53,40,58),(81,102,86,107,91,112,96,117),(82,111,87,116,92,101,97,106),(83,120,88,105,93,110,98,115),(84,109,89,114,94,119,99,104),(85,118,90,103,95,108,100,113)]])

D6.Dic5 is a maximal subgroup of
D5×C8⋊S3  C40⋊D6  C40.54D6  C40.55D6  D12.2Dic5  S3×C4.Dic5  D12.Dic5  D60.C22  C60.10C23  D2010D6  D12.9D10  D12⋊D10  Dic10.26D6  D20.28D6  C60.44C23
D6.Dic5 is a maximal quotient of
C30.22C42  C60.94D4  C60.15Q8

42 conjugacy classes

class 1 2A2B 3 4A4B4C5A5B 6 8A8B8C8D10A10B10C10D10E10F12A12B15A15B20A20B20C20D20E20F20G20H24A24B24C24D30A30B60A60B60C60D
order1223444556888810101010101012121515202020202020202024242424303060606060
size11621162221010303022666622442222666610101010444444

42 irreducible representations

dim1111112222222222444
type+++++++-+-+-
imageC1C2C2C2C4C4S3D5D6M4(2)Dic5D10Dic5C4×S3C8⋊S3C4.Dic5S3×D5S3×Dic5D6.Dic5
kernelD6.Dic5C3×C52C8C153C8S3×C20C5×Dic3S3×C10C52C8C4×S3C20C15Dic3C12D6C10C5C3C4C2C1
# reps1111221212222248224

Matrix representation of D6.Dic5 in GL4(𝔽241) generated by

1100
240000
002400
000240
,
1100
024000
002400
002081
,
64000
06400
00400
00796
,
7815600
8516300
0094228
0063147
G:=sub<GL(4,GF(241))| [1,240,0,0,1,0,0,0,0,0,240,0,0,0,0,240],[1,0,0,0,1,240,0,0,0,0,240,208,0,0,0,1],[64,0,0,0,0,64,0,0,0,0,40,79,0,0,0,6],[78,85,0,0,156,163,0,0,0,0,94,63,0,0,228,147] >;

D6.Dic5 in GAP, Magma, Sage, TeX

D_6.{\rm Dic}_5
% in TeX

G:=Group("D6.Dic5");
// GroupNames label

G:=SmallGroup(240,11);
// by ID

G=gap.SmallGroup(240,11);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,121,50,490,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=1,c^10=a^3,d^2=c^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^9>;
// generators/relations

Export

Subgroup lattice of D6.Dic5 in TeX

׿
×
𝔽