Extensions 1→N→G→Q→1 with N=C7×D8 and Q=C2

Direct product G=N×Q with N=C7×D8 and Q=C2

Semidirect products G=N:Q with N=C7×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×D8)⋊1C2 = C7⋊D16φ: C2/C1C2 ⊆ Out C7×D81124+(C7xD8):1C2224,32
(C7×D8)⋊2C2 = D7×D8φ: C2/C1C2 ⊆ Out C7×D8564+(C7xD8):2C2224,105
(C7×D8)⋊3C2 = D83D7φ: C2/C1C2 ⊆ Out C7×D81124-(C7xD8):3C2224,107
(C7×D8)⋊4C2 = D8⋊D7φ: C2/C1C2 ⊆ Out C7×D8564(C7xD8):4C2224,106
(C7×D8)⋊5C2 = C7×D16φ: C2/C1C2 ⊆ Out C7×D81122(C7xD8):5C2224,60
(C7×D8)⋊6C2 = C7×C8⋊C22φ: C2/C1C2 ⊆ Out C7×D8564(C7xD8):6C2224,171
(C7×D8)⋊7C2 = C7×C4○D8φ: trivial image1122(C7xD8):7C2224,170

Non-split extensions G=N.Q with N=C7×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×D8).1C2 = D8.D7φ: C2/C1C2 ⊆ Out C7×D81124-(C7xD8).1C2224,33
(C7×D8).2C2 = C7×SD32φ: C2/C1C2 ⊆ Out C7×D81122(C7xD8).2C2224,61