Copied to
clipboard

G = D8⋊D7order 224 = 25·7

2nd semidirect product of D8 and D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D82D7, C82D14, D42D14, C564C22, D14.6D4, C28.2C23, Dic7.8D4, D28.1C22, Dic141C22, D4⋊D72C2, (C7×D8)⋊4C2, (D4×D7)⋊2C2, C7⋊C81C22, C8⋊D73C2, C56⋊C23C2, C72(C8⋊C22), D4.D71C2, C2.16(D4×D7), D42D71C2, C14.28(C2×D4), (C7×D4)⋊2C22, C4.2(C22×D7), (C4×D7).1C22, SmallGroup(224,106)

Series: Derived Chief Lower central Upper central

C1C28 — D8⋊D7
C1C7C14C28C4×D7D4×D7 — D8⋊D7
C7C14C28 — D8⋊D7
C1C2C4D8

Generators and relations for D8⋊D7
 G = < a,b,c,d | a8=b2=c7=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, bd=db, dcd=c-1 >

Subgroups: 350 in 68 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C7, C8, C8, C2×C4, D4, D4, Q8, C23, D7, C14, C14, M4(2), D8, D8, SD16, C2×D4, C4○D4, Dic7, Dic7, C28, D14, D14, C2×C14, C8⋊C22, C7⋊C8, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C7×D4, C22×D7, C8⋊D7, C56⋊C2, D4⋊D7, D4.D7, C7×D8, D4×D7, D42D7, D8⋊D7
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C8⋊C22, C22×D7, D4×D7, D8⋊D7

Smallest permutation representation of D8⋊D7
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(17 23)(18 22)(19 21)(25 27)(28 32)(29 31)(33 37)(34 36)(38 40)(42 48)(43 47)(44 46)(50 56)(51 55)(52 54)
(1 26 16 53 35 24 41)(2 27 9 54 36 17 42)(3 28 10 55 37 18 43)(4 29 11 56 38 19 44)(5 30 12 49 39 20 45)(6 31 13 50 40 21 46)(7 32 14 51 33 22 47)(8 25 15 52 34 23 48)
(1 41)(2 46)(3 43)(4 48)(5 45)(6 42)(7 47)(8 44)(9 40)(10 37)(11 34)(12 39)(13 36)(14 33)(15 38)(16 35)(17 31)(18 28)(19 25)(20 30)(21 27)(22 32)(23 29)(24 26)(50 54)(52 56)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,23)(18,22)(19,21)(25,27)(28,32)(29,31)(33,37)(34,36)(38,40)(42,48)(43,47)(44,46)(50,56)(51,55)(52,54), (1,26,16,53,35,24,41)(2,27,9,54,36,17,42)(3,28,10,55,37,18,43)(4,29,11,56,38,19,44)(5,30,12,49,39,20,45)(6,31,13,50,40,21,46)(7,32,14,51,33,22,47)(8,25,15,52,34,23,48), (1,41)(2,46)(3,43)(4,48)(5,45)(6,42)(7,47)(8,44)(9,40)(10,37)(11,34)(12,39)(13,36)(14,33)(15,38)(16,35)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26)(50,54)(52,56)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,23)(18,22)(19,21)(25,27)(28,32)(29,31)(33,37)(34,36)(38,40)(42,48)(43,47)(44,46)(50,56)(51,55)(52,54), (1,26,16,53,35,24,41)(2,27,9,54,36,17,42)(3,28,10,55,37,18,43)(4,29,11,56,38,19,44)(5,30,12,49,39,20,45)(6,31,13,50,40,21,46)(7,32,14,51,33,22,47)(8,25,15,52,34,23,48), (1,41)(2,46)(3,43)(4,48)(5,45)(6,42)(7,47)(8,44)(9,40)(10,37)(11,34)(12,39)(13,36)(14,33)(15,38)(16,35)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26)(50,54)(52,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(17,23),(18,22),(19,21),(25,27),(28,32),(29,31),(33,37),(34,36),(38,40),(42,48),(43,47),(44,46),(50,56),(51,55),(52,54)], [(1,26,16,53,35,24,41),(2,27,9,54,36,17,42),(3,28,10,55,37,18,43),(4,29,11,56,38,19,44),(5,30,12,49,39,20,45),(6,31,13,50,40,21,46),(7,32,14,51,33,22,47),(8,25,15,52,34,23,48)], [(1,41),(2,46),(3,43),(4,48),(5,45),(6,42),(7,47),(8,44),(9,40),(10,37),(11,34),(12,39),(13,36),(14,33),(15,38),(16,35),(17,31),(18,28),(19,25),(20,30),(21,27),(22,32),(23,29),(24,26),(50,54),(52,56)]])

D8⋊D7 is a maximal subgroup of
D813D14  D810D14  D811D14  D7×C8⋊C22  SD16⋊D14  D85D14  D86D14
D8⋊D7 is a maximal quotient of
D4.D7⋊C4  D4⋊Dic14  Dic142D4  D4.Dic14  C4⋊C4.D14  C28⋊Q8⋊C2  (D4×D7)⋊C4  D4⋊(C4×D7)  D4.6D28  D14.SD16  C8⋊Dic7⋊C2  C7⋊C81D4  D43D28  C7⋊C8⋊D4  D4⋊D7⋊C4  D28.D4  Dic142Q8  C564Q8  C56⋊(C2×C4)  D14.2Q16  C2.D8⋊D7  C83D28  C56⋊C2⋊C4  D28.2Q8  Dic7⋊D8  D8⋊Dic7  (C2×D8).D7  C5611D4  D28⋊D4  Dic14⋊D4  C5612D4

32 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B14A14B14C14D···14I28A28B28C56A···56F
order1222224447778814141414···1428282856···56
size11441428214282224282228···84444···4

32 irreducible representations

dim1111111122222444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D7D14D14C8⋊C22D4×D7D8⋊D7
kernelD8⋊D7C8⋊D7C56⋊C2D4⋊D7D4.D7C7×D8D4×D7D42D7Dic7D14D8C8D4C7C2C1
# reps1111111111336136

Matrix representation of D8⋊D7 in GL4(𝔽113) generated by

004349
00715
178210395
751011810
,
1000
0100
51391120
7400112
,
34100
11110300
0001
0011224
,
10311200
991000
0001
0010
G:=sub<GL(4,GF(113))| [0,0,17,75,0,0,82,101,43,71,103,18,49,5,95,10],[1,0,51,74,0,1,39,0,0,0,112,0,0,0,0,112],[34,111,0,0,1,103,0,0,0,0,0,112,0,0,1,24],[103,99,0,0,112,10,0,0,0,0,0,1,0,0,1,0] >;

D8⋊D7 in GAP, Magma, Sage, TeX

D_8\rtimes D_7
% in TeX

G:=Group("D8:D7");
// GroupNames label

G:=SmallGroup(224,106);
// by ID

G=gap.SmallGroup(224,106);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,362,116,297,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^7=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽