Copied to
clipboard

G = C14×D8order 224 = 25·7

Direct product of C14 and D8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C14×D8, C28.41D4, C5612C22, C28.44C23, (C2×C8)⋊3C14, C82(C2×C14), C4.6(C7×D4), (C2×C56)⋊11C2, D41(C2×C14), (C2×D4)⋊4C14, (D4×C14)⋊13C2, C14.74(C2×D4), C2.11(D4×C14), (C2×C14).52D4, (C7×D4)⋊10C22, C4.1(C22×C14), C22.14(C7×D4), (C2×C28).129C22, (C2×C4).25(C2×C14), SmallGroup(224,167)

Series: Derived Chief Lower central Upper central

C1C4 — C14×D8
C1C2C4C28C7×D4C7×D8 — C14×D8
C1C2C4 — C14×D8
C1C2×C14C2×C28 — C14×D8

Generators and relations for C14×D8
 G = < a,b,c | a14=b8=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 140 in 76 conjugacy classes, 44 normal (16 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C8, C2×C4, D4, D4, C23, C14, C14, C14, C2×C8, D8, C2×D4, C28, C2×C14, C2×C14, C2×D8, C56, C2×C28, C7×D4, C7×D4, C22×C14, C2×C56, C7×D8, D4×C14, C14×D8
Quotients: C1, C2, C22, C7, D4, C23, C14, D8, C2×D4, C2×C14, C2×D8, C7×D4, C22×C14, C7×D8, D4×C14, C14×D8

Smallest permutation representation of C14×D8
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 82 66 102 47 18 33 93)(2 83 67 103 48 19 34 94)(3 84 68 104 49 20 35 95)(4 71 69 105 50 21 36 96)(5 72 70 106 51 22 37 97)(6 73 57 107 52 23 38 98)(7 74 58 108 53 24 39 85)(8 75 59 109 54 25 40 86)(9 76 60 110 55 26 41 87)(10 77 61 111 56 27 42 88)(11 78 62 112 43 28 29 89)(12 79 63 99 44 15 30 90)(13 80 64 100 45 16 31 91)(14 81 65 101 46 17 32 92)
(1 93)(2 94)(3 95)(4 96)(5 97)(6 98)(7 85)(8 86)(9 87)(10 88)(11 89)(12 90)(13 91)(14 92)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 57)(24 58)(25 59)(26 60)(27 61)(28 62)(29 78)(30 79)(31 80)(32 81)(33 82)(34 83)(35 84)(36 71)(37 72)(38 73)(39 74)(40 75)(41 76)(42 77)(43 112)(44 99)(45 100)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,82,66,102,47,18,33,93)(2,83,67,103,48,19,34,94)(3,84,68,104,49,20,35,95)(4,71,69,105,50,21,36,96)(5,72,70,106,51,22,37,97)(6,73,57,107,52,23,38,98)(7,74,58,108,53,24,39,85)(8,75,59,109,54,25,40,86)(9,76,60,110,55,26,41,87)(10,77,61,111,56,27,42,88)(11,78,62,112,43,28,29,89)(12,79,63,99,44,15,30,90)(13,80,64,100,45,16,31,91)(14,81,65,101,46,17,32,92), (1,93)(2,94)(3,95)(4,96)(5,97)(6,98)(7,85)(8,86)(9,87)(10,88)(11,89)(12,90)(13,91)(14,92)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,78)(30,79)(31,80)(32,81)(33,82)(34,83)(35,84)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(43,112)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,82,66,102,47,18,33,93)(2,83,67,103,48,19,34,94)(3,84,68,104,49,20,35,95)(4,71,69,105,50,21,36,96)(5,72,70,106,51,22,37,97)(6,73,57,107,52,23,38,98)(7,74,58,108,53,24,39,85)(8,75,59,109,54,25,40,86)(9,76,60,110,55,26,41,87)(10,77,61,111,56,27,42,88)(11,78,62,112,43,28,29,89)(12,79,63,99,44,15,30,90)(13,80,64,100,45,16,31,91)(14,81,65,101,46,17,32,92), (1,93)(2,94)(3,95)(4,96)(5,97)(6,98)(7,85)(8,86)(9,87)(10,88)(11,89)(12,90)(13,91)(14,92)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,78)(30,79)(31,80)(32,81)(33,82)(34,83)(35,84)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(43,112)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,82,66,102,47,18,33,93),(2,83,67,103,48,19,34,94),(3,84,68,104,49,20,35,95),(4,71,69,105,50,21,36,96),(5,72,70,106,51,22,37,97),(6,73,57,107,52,23,38,98),(7,74,58,108,53,24,39,85),(8,75,59,109,54,25,40,86),(9,76,60,110,55,26,41,87),(10,77,61,111,56,27,42,88),(11,78,62,112,43,28,29,89),(12,79,63,99,44,15,30,90),(13,80,64,100,45,16,31,91),(14,81,65,101,46,17,32,92)], [(1,93),(2,94),(3,95),(4,96),(5,97),(6,98),(7,85),(8,86),(9,87),(10,88),(11,89),(12,90),(13,91),(14,92),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,57),(24,58),(25,59),(26,60),(27,61),(28,62),(29,78),(30,79),(31,80),(32,81),(33,82),(34,83),(35,84),(36,71),(37,72),(38,73),(39,74),(40,75),(41,76),(42,77),(43,112),(44,99),(45,100),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111)]])

C14×D8 is a maximal subgroup of
C14.SD32  D8.Dic7  D8.D14  Dic7⋊D8  C565D4  D8⋊Dic7  (C2×D8).D7  C5611D4  C56.22D4  D28⋊D4  C566D4  Dic14⋊D4  C5612D4  C56.23D4  D813D14

98 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B7A···7F8A8B8C8D14A···14R14S···14AP28A···28L56A···56X
order12222222447···7888814···1414···1428···2856···56
size11114444221···122221···14···42···22···2

98 irreducible representations

dim11111111222222
type+++++++
imageC1C2C2C2C7C14C14C14D4D4D8C7×D4C7×D4C7×D8
kernelC14×D8C2×C56C7×D8D4×C14C2×D8C2×C8D8C2×D4C28C2×C14C14C4C22C2
# reps11426624121146624

Matrix representation of C14×D8 in GL4(𝔽113) generated by

7000
0700
00830
00083
,
011200
1000
00031
005162
,
011200
112000
006282
006251
G:=sub<GL(4,GF(113))| [7,0,0,0,0,7,0,0,0,0,83,0,0,0,0,83],[0,1,0,0,112,0,0,0,0,0,0,51,0,0,31,62],[0,112,0,0,112,0,0,0,0,0,62,62,0,0,82,51] >;

C14×D8 in GAP, Magma, Sage, TeX

C_{14}\times D_8
% in TeX

G:=Group("C14xD8");
// GroupNames label

G:=SmallGroup(224,167);
// by ID

G=gap.SmallGroup(224,167);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,697,5044,2530,88]);
// Polycyclic

G:=Group<a,b,c|a^14=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽