Extensions 1→N→G→Q→1 with N=C2×Dic5 and Q=C6

Direct product G=N×Q with N=C2×Dic5 and Q=C6
dρLabelID
C2×C6×Dic5240C2xC6xDic5240,163

Semidirect products G=N:Q with N=C2×Dic5 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×Dic5)⋊1C6 = C3×D10⋊C4φ: C6/C3C2 ⊆ Out C2×Dic5120(C2xDic5):1C6240,43
(C2×Dic5)⋊2C6 = C3×C23.D5φ: C6/C3C2 ⊆ Out C2×Dic5120(C2xDic5):2C6240,48
(C2×Dic5)⋊3C6 = C3×D42D5φ: C6/C3C2 ⊆ Out C2×Dic51204(C2xDic5):3C6240,160
(C2×Dic5)⋊4C6 = C6×C5⋊D4φ: C6/C3C2 ⊆ Out C2×Dic5120(C2xDic5):4C6240,164
(C2×Dic5)⋊5C6 = D5×C2×C12φ: trivial image120(C2xDic5):5C6240,156

Non-split extensions G=N.Q with N=C2×Dic5 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×Dic5).1C6 = C3×C10.D4φ: C6/C3C2 ⊆ Out C2×Dic5240(C2xDic5).1C6240,41
(C2×Dic5).2C6 = C3×C4⋊Dic5φ: C6/C3C2 ⊆ Out C2×Dic5240(C2xDic5).2C6240,42
(C2×Dic5).3C6 = C6×Dic10φ: C6/C3C2 ⊆ Out C2×Dic5240(C2xDic5).3C6240,155
(C2×Dic5).4C6 = C6×C5⋊C8φ: C6/C3C2 ⊆ Out C2×Dic5240(C2xDic5).4C6240,115
(C2×Dic5).5C6 = C3×C22.F5φ: C6/C3C2 ⊆ Out C2×Dic51204(C2xDic5).5C6240,116
(C2×Dic5).6C6 = C12×Dic5φ: trivial image240(C2xDic5).6C6240,40

׿
×
𝔽