Copied to
clipboard

G = C6×C5⋊D4order 240 = 24·3·5

Direct product of C6 and C5⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6×C5⋊D4, C308D4, C30.47C23, C53(C6×D4), C102(C3×D4), (C2×C6)⋊7D10, C1517(C2×D4), D103(C2×C6), C232(C3×D5), (C22×C6)⋊1D5, C223(C6×D5), (C22×C10)⋊4C6, (C22×C30)⋊4C2, Dic52(C2×C6), (C2×Dic5)⋊4C6, (C22×D5)⋊4C6, (C2×C30)⋊11C22, (C6×Dic5)⋊10C2, (C6×D5)⋊11C22, C6.47(C22×D5), C10.10(C22×C6), (C3×Dic5)⋊9C22, (D5×C2×C6)⋊7C2, C2.10(D5×C2×C6), (C2×C10)⋊5(C2×C6), SmallGroup(240,164)

Series: Derived Chief Lower central Upper central

C1C10 — C6×C5⋊D4
C1C5C10C30C6×D5D5×C2×C6 — C6×C5⋊D4
C5C10 — C6×C5⋊D4
C1C2×C6C22×C6

Generators and relations for C6×C5⋊D4
 G = < a,b,c,d | a6=b5=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 292 in 108 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, C6, C6, C6, C2×C4, D4, C23, C23, D5, C10, C10, C10, C12, C2×C6, C2×C6, C2×C6, C15, C2×D4, Dic5, D10, D10, C2×C10, C2×C10, C2×C10, C2×C12, C3×D4, C22×C6, C22×C6, C3×D5, C30, C30, C30, C2×Dic5, C5⋊D4, C22×D5, C22×C10, C6×D4, C3×Dic5, C6×D5, C6×D5, C2×C30, C2×C30, C2×C30, C2×C5⋊D4, C6×Dic5, C3×C5⋊D4, D5×C2×C6, C22×C30, C6×C5⋊D4
Quotients: C1, C2, C3, C22, C6, D4, C23, D5, C2×C6, C2×D4, D10, C3×D4, C22×C6, C3×D5, C5⋊D4, C22×D5, C6×D4, C6×D5, C2×C5⋊D4, C3×C5⋊D4, D5×C2×C6, C6×C5⋊D4

Smallest permutation representation of C6×C5⋊D4
On 120 points
Generators in S120
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 17 109 50 115)(2 18 110 51 116)(3 13 111 52 117)(4 14 112 53 118)(5 15 113 54 119)(6 16 114 49 120)(7 103 19 46 92)(8 104 20 47 93)(9 105 21 48 94)(10 106 22 43 95)(11 107 23 44 96)(12 108 24 45 91)(25 55 67 31 79)(26 56 68 32 80)(27 57 69 33 81)(28 58 70 34 82)(29 59 71 35 83)(30 60 72 36 84)(37 77 89 101 65)(38 78 90 102 66)(39 73 85 97 61)(40 74 86 98 62)(41 75 87 99 63)(42 76 88 100 64)
(1 89 30 95)(2 90 25 96)(3 85 26 91)(4 86 27 92)(5 87 28 93)(6 88 29 94)(7 118 98 81)(8 119 99 82)(9 120 100 83)(10 115 101 84)(11 116 102 79)(12 117 97 80)(13 73 56 45)(14 74 57 46)(15 75 58 47)(16 76 59 48)(17 77 60 43)(18 78 55 44)(19 112 40 69)(20 113 41 70)(21 114 42 71)(22 109 37 72)(23 110 38 67)(24 111 39 68)(31 107 51 66)(32 108 52 61)(33 103 53 62)(34 104 54 63)(35 105 49 64)(36 106 50 65)
(7 74)(8 75)(9 76)(10 77)(11 78)(12 73)(13 117)(14 118)(15 119)(16 120)(17 115)(18 116)(19 62)(20 63)(21 64)(22 65)(23 66)(24 61)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)(37 106)(38 107)(39 108)(40 103)(41 104)(42 105)(43 101)(44 102)(45 97)(46 98)(47 99)(48 100)(49 114)(50 109)(51 110)(52 111)(53 112)(54 113)(55 79)(56 80)(57 81)(58 82)(59 83)(60 84)(85 91)(86 92)(87 93)(88 94)(89 95)(90 96)

G:=sub<Sym(120)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,17,109,50,115)(2,18,110,51,116)(3,13,111,52,117)(4,14,112,53,118)(5,15,113,54,119)(6,16,114,49,120)(7,103,19,46,92)(8,104,20,47,93)(9,105,21,48,94)(10,106,22,43,95)(11,107,23,44,96)(12,108,24,45,91)(25,55,67,31,79)(26,56,68,32,80)(27,57,69,33,81)(28,58,70,34,82)(29,59,71,35,83)(30,60,72,36,84)(37,77,89,101,65)(38,78,90,102,66)(39,73,85,97,61)(40,74,86,98,62)(41,75,87,99,63)(42,76,88,100,64), (1,89,30,95)(2,90,25,96)(3,85,26,91)(4,86,27,92)(5,87,28,93)(6,88,29,94)(7,118,98,81)(8,119,99,82)(9,120,100,83)(10,115,101,84)(11,116,102,79)(12,117,97,80)(13,73,56,45)(14,74,57,46)(15,75,58,47)(16,76,59,48)(17,77,60,43)(18,78,55,44)(19,112,40,69)(20,113,41,70)(21,114,42,71)(22,109,37,72)(23,110,38,67)(24,111,39,68)(31,107,51,66)(32,108,52,61)(33,103,53,62)(34,104,54,63)(35,105,49,64)(36,106,50,65), (7,74)(8,75)(9,76)(10,77)(11,78)(12,73)(13,117)(14,118)(15,119)(16,120)(17,115)(18,116)(19,62)(20,63)(21,64)(22,65)(23,66)(24,61)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,106)(38,107)(39,108)(40,103)(41,104)(42,105)(43,101)(44,102)(45,97)(46,98)(47,99)(48,100)(49,114)(50,109)(51,110)(52,111)(53,112)(54,113)(55,79)(56,80)(57,81)(58,82)(59,83)(60,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,17,109,50,115)(2,18,110,51,116)(3,13,111,52,117)(4,14,112,53,118)(5,15,113,54,119)(6,16,114,49,120)(7,103,19,46,92)(8,104,20,47,93)(9,105,21,48,94)(10,106,22,43,95)(11,107,23,44,96)(12,108,24,45,91)(25,55,67,31,79)(26,56,68,32,80)(27,57,69,33,81)(28,58,70,34,82)(29,59,71,35,83)(30,60,72,36,84)(37,77,89,101,65)(38,78,90,102,66)(39,73,85,97,61)(40,74,86,98,62)(41,75,87,99,63)(42,76,88,100,64), (1,89,30,95)(2,90,25,96)(3,85,26,91)(4,86,27,92)(5,87,28,93)(6,88,29,94)(7,118,98,81)(8,119,99,82)(9,120,100,83)(10,115,101,84)(11,116,102,79)(12,117,97,80)(13,73,56,45)(14,74,57,46)(15,75,58,47)(16,76,59,48)(17,77,60,43)(18,78,55,44)(19,112,40,69)(20,113,41,70)(21,114,42,71)(22,109,37,72)(23,110,38,67)(24,111,39,68)(31,107,51,66)(32,108,52,61)(33,103,53,62)(34,104,54,63)(35,105,49,64)(36,106,50,65), (7,74)(8,75)(9,76)(10,77)(11,78)(12,73)(13,117)(14,118)(15,119)(16,120)(17,115)(18,116)(19,62)(20,63)(21,64)(22,65)(23,66)(24,61)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,106)(38,107)(39,108)(40,103)(41,104)(42,105)(43,101)(44,102)(45,97)(46,98)(47,99)(48,100)(49,114)(50,109)(51,110)(52,111)(53,112)(54,113)(55,79)(56,80)(57,81)(58,82)(59,83)(60,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,17,109,50,115),(2,18,110,51,116),(3,13,111,52,117),(4,14,112,53,118),(5,15,113,54,119),(6,16,114,49,120),(7,103,19,46,92),(8,104,20,47,93),(9,105,21,48,94),(10,106,22,43,95),(11,107,23,44,96),(12,108,24,45,91),(25,55,67,31,79),(26,56,68,32,80),(27,57,69,33,81),(28,58,70,34,82),(29,59,71,35,83),(30,60,72,36,84),(37,77,89,101,65),(38,78,90,102,66),(39,73,85,97,61),(40,74,86,98,62),(41,75,87,99,63),(42,76,88,100,64)], [(1,89,30,95),(2,90,25,96),(3,85,26,91),(4,86,27,92),(5,87,28,93),(6,88,29,94),(7,118,98,81),(8,119,99,82),(9,120,100,83),(10,115,101,84),(11,116,102,79),(12,117,97,80),(13,73,56,45),(14,74,57,46),(15,75,58,47),(16,76,59,48),(17,77,60,43),(18,78,55,44),(19,112,40,69),(20,113,41,70),(21,114,42,71),(22,109,37,72),(23,110,38,67),(24,111,39,68),(31,107,51,66),(32,108,52,61),(33,103,53,62),(34,104,54,63),(35,105,49,64),(36,106,50,65)], [(7,74),(8,75),(9,76),(10,77),(11,78),(12,73),(13,117),(14,118),(15,119),(16,120),(17,115),(18,116),(19,62),(20,63),(21,64),(22,65),(23,66),(24,61),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72),(37,106),(38,107),(39,108),(40,103),(41,104),(42,105),(43,101),(44,102),(45,97),(46,98),(47,99),(48,100),(49,114),(50,109),(51,110),(52,111),(53,112),(54,113),(55,79),(56,80),(57,81),(58,82),(59,83),(60,84),(85,91),(86,92),(87,93),(88,94),(89,95),(90,96)]])

C6×C5⋊D4 is a maximal subgroup of
(C2×C6).D20  C3⋊(C23⋊F5)  C5⋊(C12.D4)  D306D4  C6.(D4×D5)  (C2×C30).D4  C6.(C2×D20)  C23.17(S3×D5)  (C6×D5)⋊D4  Dic153D4  Dic1516D4  (S3×C10)⋊D4  Dic155D4  C15⋊C22≀C2  (C2×C6)⋊D20  Dic1518D4  D3018D4  D308D4  C15⋊2+ 1+4  C6×D4×D5

78 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B5A5B6A···6F6G6H6I6J6K6L6M6N10A···10N12A12B12C12D15A15B15C15D30A···30AB
order122222223344556···66666666610···10121212121515151530···30
size1111221010111010221···12222101010102···21010101022222···2

78 irreducible representations

dim111111111122222222
type++++++++
imageC1C2C2C2C2C3C6C6C6C6D4D5D10C3×D4C3×D5C5⋊D4C6×D5C3×C5⋊D4
kernelC6×C5⋊D4C6×Dic5C3×C5⋊D4D5×C2×C6C22×C30C2×C5⋊D4C2×Dic5C5⋊D4C22×D5C22×C10C30C22×C6C2×C6C10C23C6C22C2
# reps11411228222264481216

Matrix representation of C6×C5⋊D4 in GL3(𝔽61) generated by

4800
0600
0060
,
100
0060
0143
,
6000
0318
01730
,
6000
0143
0060
G:=sub<GL(3,GF(61))| [48,0,0,0,60,0,0,0,60],[1,0,0,0,0,1,0,60,43],[60,0,0,0,31,17,0,8,30],[60,0,0,0,1,0,0,43,60] >;

C6×C5⋊D4 in GAP, Magma, Sage, TeX

C_6\times C_5\rtimes D_4
% in TeX

G:=Group("C6xC5:D4");
// GroupNames label

G:=SmallGroup(240,164);
// by ID

G=gap.SmallGroup(240,164);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-5,506,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^5=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽