direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D122, C2×D61, C122⋊C2, C61⋊C22, sometimes denoted D244 or Dih122 or Dih244, SmallGroup(244,4)
Series: Derived ►Chief ►Lower central ►Upper central
| C61 — D122 | 
Generators and relations for D122
 G = < a,b | a122=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122)
(1 122)(2 121)(3 120)(4 119)(5 118)(6 117)(7 116)(8 115)(9 114)(10 113)(11 112)(12 111)(13 110)(14 109)(15 108)(16 107)(17 106)(18 105)(19 104)(20 103)(21 102)(22 101)(23 100)(24 99)(25 98)(26 97)(27 96)(28 95)(29 94)(30 93)(31 92)(32 91)(33 90)(34 89)(35 88)(36 87)(37 86)(38 85)(39 84)(40 83)(41 82)(42 81)(43 80)(44 79)(45 78)(46 77)(47 76)(48 75)(49 74)(50 73)(51 72)(52 71)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)(61 62)
G:=sub<Sym(122)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122), (1,122)(2,121)(3,120)(4,119)(5,118)(6,117)(7,116)(8,115)(9,114)(10,113)(11,112)(12,111)(13,110)(14,109)(15,108)(16,107)(17,106)(18,105)(19,104)(20,103)(21,102)(22,101)(23,100)(24,99)(25,98)(26,97)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122), (1,122)(2,121)(3,120)(4,119)(5,118)(6,117)(7,116)(8,115)(9,114)(10,113)(11,112)(12,111)(13,110)(14,109)(15,108)(16,107)(17,106)(18,105)(19,104)(20,103)(21,102)(22,101)(23,100)(24,99)(25,98)(26,97)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122)], [(1,122),(2,121),(3,120),(4,119),(5,118),(6,117),(7,116),(8,115),(9,114),(10,113),(11,112),(12,111),(13,110),(14,109),(15,108),(16,107),(17,106),(18,105),(19,104),(20,103),(21,102),(22,101),(23,100),(24,99),(25,98),(26,97),(27,96),(28,95),(29,94),(30,93),(31,92),(32,91),(33,90),(34,89),(35,88),(36,87),(37,86),(38,85),(39,84),(40,83),(41,82),(42,81),(43,80),(44,79),(45,78),(46,77),(47,76),(48,75),(49,74),(50,73),(51,72),(52,71),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63),(61,62)]])
D122 is a maximal subgroup of
  D244  C61⋊D4
D122 is a maximal quotient of   Dic122  D244  C61⋊D4
64 conjugacy classes
| class | 1 | 2A | 2B | 2C | 61A | ··· | 61AD | 122A | ··· | 122AD | 
| order | 1 | 2 | 2 | 2 | 61 | ··· | 61 | 122 | ··· | 122 | 
| size | 1 | 1 | 61 | 61 | 2 | ··· | 2 | 2 | ··· | 2 | 
64 irreducible representations
| dim | 1 | 1 | 1 | 2 | 2 | 
| type | + | + | + | + | + | 
| image | C1 | C2 | C2 | D61 | D122 | 
| kernel | D122 | D61 | C122 | C2 | C1 | 
| # reps | 1 | 2 | 1 | 30 | 30 | 
Matrix representation of D122 ►in GL2(𝔽367) generated by
| 274 | 361 | 
| 68 | 32 | 
| 81 | 184 | 
| 92 | 286 | 
G:=sub<GL(2,GF(367))| [274,68,361,32],[81,92,184,286] >;
D122 in GAP, Magma, Sage, TeX
D_{122} % in TeX
G:=Group("D122"); // GroupNames label
G:=SmallGroup(244,4);
// by ID
G=gap.SmallGroup(244,4);
# by ID
G:=PCGroup([3,-2,-2,-61,2162]);
// Polycyclic
G:=Group<a,b|a^122=b^2=1,b*a*b=a^-1>;
// generators/relations
Export