Copied to
clipboard

G = D244order 488 = 23·61

Dihedral group

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: D244, C4⋊D61, C611D4, C2441C2, D1221C2, C2.4D122, C122.3C22, sometimes denoted D488 or Dih244 or Dih488, SmallGroup(488,6)

Series: Derived Chief Lower central Upper central

C1C122 — D244
C1C61C122D122 — D244
C61C122 — D244
C1C2C4

Generators and relations for D244
 G = < a,b | a244=b2=1, bab=a-1 >

122C2
122C2
61C22
61C22
2D61
2D61
61D4

Smallest permutation representation of D244
On 244 points
Generators in S244
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244)
(1 183)(2 182)(3 181)(4 180)(5 179)(6 178)(7 177)(8 176)(9 175)(10 174)(11 173)(12 172)(13 171)(14 170)(15 169)(16 168)(17 167)(18 166)(19 165)(20 164)(21 163)(22 162)(23 161)(24 160)(25 159)(26 158)(27 157)(28 156)(29 155)(30 154)(31 153)(32 152)(33 151)(34 150)(35 149)(36 148)(37 147)(38 146)(39 145)(40 144)(41 143)(42 142)(43 141)(44 140)(45 139)(46 138)(47 137)(48 136)(49 135)(50 134)(51 133)(52 132)(53 131)(54 130)(55 129)(56 128)(57 127)(58 126)(59 125)(60 124)(61 123)(62 122)(63 121)(64 120)(65 119)(66 118)(67 117)(68 116)(69 115)(70 114)(71 113)(72 112)(73 111)(74 110)(75 109)(76 108)(77 107)(78 106)(79 105)(80 104)(81 103)(82 102)(83 101)(84 100)(85 99)(86 98)(87 97)(88 96)(89 95)(90 94)(91 93)(184 244)(185 243)(186 242)(187 241)(188 240)(189 239)(190 238)(191 237)(192 236)(193 235)(194 234)(195 233)(196 232)(197 231)(198 230)(199 229)(200 228)(201 227)(202 226)(203 225)(204 224)(205 223)(206 222)(207 221)(208 220)(209 219)(210 218)(211 217)(212 216)(213 215)

G:=sub<Sym(244)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244), (1,183)(2,182)(3,181)(4,180)(5,179)(6,178)(7,177)(8,176)(9,175)(10,174)(11,173)(12,172)(13,171)(14,170)(15,169)(16,168)(17,167)(18,166)(19,165)(20,164)(21,163)(22,162)(23,161)(24,160)(25,159)(26,158)(27,157)(28,156)(29,155)(30,154)(31,153)(32,152)(33,151)(34,150)(35,149)(36,148)(37,147)(38,146)(39,145)(40,144)(41,143)(42,142)(43,141)(44,140)(45,139)(46,138)(47,137)(48,136)(49,135)(50,134)(51,133)(52,132)(53,131)(54,130)(55,129)(56,128)(57,127)(58,126)(59,125)(60,124)(61,123)(62,122)(63,121)(64,120)(65,119)(66,118)(67,117)(68,116)(69,115)(70,114)(71,113)(72,112)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93)(184,244)(185,243)(186,242)(187,241)(188,240)(189,239)(190,238)(191,237)(192,236)(193,235)(194,234)(195,233)(196,232)(197,231)(198,230)(199,229)(200,228)(201,227)(202,226)(203,225)(204,224)(205,223)(206,222)(207,221)(208,220)(209,219)(210,218)(211,217)(212,216)(213,215)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244), (1,183)(2,182)(3,181)(4,180)(5,179)(6,178)(7,177)(8,176)(9,175)(10,174)(11,173)(12,172)(13,171)(14,170)(15,169)(16,168)(17,167)(18,166)(19,165)(20,164)(21,163)(22,162)(23,161)(24,160)(25,159)(26,158)(27,157)(28,156)(29,155)(30,154)(31,153)(32,152)(33,151)(34,150)(35,149)(36,148)(37,147)(38,146)(39,145)(40,144)(41,143)(42,142)(43,141)(44,140)(45,139)(46,138)(47,137)(48,136)(49,135)(50,134)(51,133)(52,132)(53,131)(54,130)(55,129)(56,128)(57,127)(58,126)(59,125)(60,124)(61,123)(62,122)(63,121)(64,120)(65,119)(66,118)(67,117)(68,116)(69,115)(70,114)(71,113)(72,112)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93)(184,244)(185,243)(186,242)(187,241)(188,240)(189,239)(190,238)(191,237)(192,236)(193,235)(194,234)(195,233)(196,232)(197,231)(198,230)(199,229)(200,228)(201,227)(202,226)(203,225)(204,224)(205,223)(206,222)(207,221)(208,220)(209,219)(210,218)(211,217)(212,216)(213,215) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244)], [(1,183),(2,182),(3,181),(4,180),(5,179),(6,178),(7,177),(8,176),(9,175),(10,174),(11,173),(12,172),(13,171),(14,170),(15,169),(16,168),(17,167),(18,166),(19,165),(20,164),(21,163),(22,162),(23,161),(24,160),(25,159),(26,158),(27,157),(28,156),(29,155),(30,154),(31,153),(32,152),(33,151),(34,150),(35,149),(36,148),(37,147),(38,146),(39,145),(40,144),(41,143),(42,142),(43,141),(44,140),(45,139),(46,138),(47,137),(48,136),(49,135),(50,134),(51,133),(52,132),(53,131),(54,130),(55,129),(56,128),(57,127),(58,126),(59,125),(60,124),(61,123),(62,122),(63,121),(64,120),(65,119),(66,118),(67,117),(68,116),(69,115),(70,114),(71,113),(72,112),(73,111),(74,110),(75,109),(76,108),(77,107),(78,106),(79,105),(80,104),(81,103),(82,102),(83,101),(84,100),(85,99),(86,98),(87,97),(88,96),(89,95),(90,94),(91,93),(184,244),(185,243),(186,242),(187,241),(188,240),(189,239),(190,238),(191,237),(192,236),(193,235),(194,234),(195,233),(196,232),(197,231),(198,230),(199,229),(200,228),(201,227),(202,226),(203,225),(204,224),(205,223),(206,222),(207,221),(208,220),(209,219),(210,218),(211,217),(212,216),(213,215)])

125 conjugacy classes

class 1 2A2B2C 4 61A···61AD122A···122AD244A···244BH
order1222461···61122···122244···244
size1112212222···22···22···2

125 irreducible representations

dim1112222
type+++++++
imageC1C2C2D4D61D122D244
kernelD244C244D122C61C4C2C1
# reps1121303060

Matrix representation of D244 in GL2(𝔽733) generated by

313605
270461
,
506112
430227
G:=sub<GL(2,GF(733))| [313,270,605,461],[506,430,112,227] >;

D244 in GAP, Magma, Sage, TeX

D_{244}
% in TeX

G:=Group("D244");
// GroupNames label

G:=SmallGroup(488,6);
// by ID

G=gap.SmallGroup(488,6);
# by ID

G:=PCGroup([4,-2,-2,-2,-61,49,21,7683]);
// Polycyclic

G:=Group<a,b|a^244=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D244 in TeX

׿
×
𝔽