# Extensions 1→N→G→Q→1 with N=C3×3- 1+2 and Q=C3

Direct product G=N×Q with N=C3×3- 1+2 and Q=C3
dρLabelID
C32×3- 1+281C3^2xES-(3,1)243,63

Semidirect products G=N:Q with N=C3×3- 1+2 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3×3- 1+2)⋊1C3 = C33.C32φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)):1C3243,4
(C3×3- 1+2)⋊2C3 = C34.C3φ: C3/C1C3 ⊆ Out C3×3- 1+227(C3xES-(3,1)):2C3243,38
(C3×3- 1+2)⋊3C3 = C9⋊He3φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)):3C3243,39
(C3×3- 1+2)⋊4C3 = C32.23C33φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)):4C3243,40
(C3×3- 1+2)⋊5C3 = C3×C3≀C3φ: C3/C1C3 ⊆ Out C3×3- 1+227(C3xES-(3,1)):5C3243,51
(C3×3- 1+2)⋊6C3 = C3×He3.C3φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)):6C3243,52
(C3×3- 1+2)⋊7C3 = C33⋊C32φ: C3/C1C3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)):7C3243,56
(C3×3- 1+2)⋊8C3 = He3.C32φ: C3/C1C3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)):8C3243,57
(C3×3- 1+2)⋊9C3 = He3⋊C32φ: C3/C1C3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)):9C3243,58
(C3×3- 1+2)⋊10C3 = C9.2He3φ: C3/C1C3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)):10C3243,60
(C3×3- 1+2)⋊11C3 = 3- 1+4φ: C3/C1C3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)):11C3243,66
(C3×3- 1+2)⋊12C3 = C3×C9○He3φ: trivial image81(C3xES-(3,1)):12C3243,64

Non-split extensions G=N.Q with N=C3×3- 1+2 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3×3- 1+2).1C3 = C33.3C32φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).1C3243,5
(C3×3- 1+2).2C3 = C32.28He3φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).2C3243,7
(C3×3- 1+2).3C3 = 3- 1+2⋊C9φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).3C3243,18
(C3×3- 1+2).4C3 = C9⋊3- 1+2φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).4C3243,41
(C3×3- 1+2).5C3 = C927C3φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).5C3243,43
(C3×3- 1+2).6C3 = C928C3φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).6C3243,46
(C3×3- 1+2).7C3 = C929C3φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).7C3243,47
(C3×3- 1+2).8C3 = C3×C3.He3φ: C3/C1C3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).8C3243,54
(C3×3- 1+2).9C3 = C32.C33φ: C3/C1C3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)).9C3243,59
(C3×3- 1+2).10C3 = C9×3- 1+2φ: trivial image81(C3xES-(3,1)).10C3243,36

׿
×
𝔽