Copied to
clipboard

G = C3×C9○He3order 243 = 35

Direct product of C3 and C9○He3

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C3×C9○He3, C3.3C34, C9.1C33, He3.6C32, C32.12C33, C33.37C32, 3- 1+25C32, (C3×C9)He3, (C3×C9)⋊9C32, (C32×C9)⋊10C3, (C3×He3).10C3, (C3×C9)3- 1+2, (C3×3- 1+2)⋊12C3, SmallGroup(243,64)

Series: Derived Chief Lower central Upper central Jennings

C1C3 — C3×C9○He3
C1C3C32C3×C9C32×C9 — C3×C9○He3
C1C3 — C3×C9○He3
C1C3×C9 — C3×C9○He3
C1C3C3 — C3×C9○He3

Generators and relations for C3×C9○He3
 G = < a,b,c,d,e | a3=b9=c3=e3=1, d1=b6, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=b3c, de=ed >

Subgroups: 288 in 240 conjugacy classes, 216 normal (6 characteristic)
C1, C3, C3, C3, C9, C32, C32, C32, C3×C9, C3×C9, He3, 3- 1+2, C33, C32×C9, C3×He3, C3×3- 1+2, C9○He3, C3×C9○He3
Quotients: C1, C3, C32, C33, C9○He3, C34, C3×C9○He3

Smallest permutation representation of C3×C9○He3
On 81 points
Generators in S81
(1 31 41)(2 32 42)(3 33 43)(4 34 44)(5 35 45)(6 36 37)(7 28 38)(8 29 39)(9 30 40)(10 79 21)(11 80 22)(12 81 23)(13 73 24)(14 74 25)(15 75 26)(16 76 27)(17 77 19)(18 78 20)(46 66 55)(47 67 56)(48 68 57)(49 69 58)(50 70 59)(51 71 60)(52 72 61)(53 64 62)(54 65 63)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 76 79)(74 77 80)(75 78 81)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)
(1 23 54)(2 24 46)(3 25 47)(4 26 48)(5 27 49)(6 19 50)(7 20 51)(8 21 52)(9 22 53)(10 72 29)(11 64 30)(12 65 31)(13 66 32)(14 67 33)(15 68 34)(16 69 35)(17 70 36)(18 71 28)(37 77 59)(38 78 60)(39 79 61)(40 80 62)(41 81 63)(42 73 55)(43 74 56)(44 75 57)(45 76 58)

G:=sub<Sym(81)| (1,31,41)(2,32,42)(3,33,43)(4,34,44)(5,35,45)(6,36,37)(7,28,38)(8,29,39)(9,30,40)(10,79,21)(11,80,22)(12,81,23)(13,73,24)(14,74,25)(15,75,26)(16,76,27)(17,77,19)(18,78,20)(46,66,55)(47,67,56)(48,68,57)(49,69,58)(50,70,59)(51,71,60)(52,72,61)(53,64,62)(54,65,63), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,76,79)(74,77,80)(75,78,81), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,23,54)(2,24,46)(3,25,47)(4,26,48)(5,27,49)(6,19,50)(7,20,51)(8,21,52)(9,22,53)(10,72,29)(11,64,30)(12,65,31)(13,66,32)(14,67,33)(15,68,34)(16,69,35)(17,70,36)(18,71,28)(37,77,59)(38,78,60)(39,79,61)(40,80,62)(41,81,63)(42,73,55)(43,74,56)(44,75,57)(45,76,58)>;

G:=Group( (1,31,41)(2,32,42)(3,33,43)(4,34,44)(5,35,45)(6,36,37)(7,28,38)(8,29,39)(9,30,40)(10,79,21)(11,80,22)(12,81,23)(13,73,24)(14,74,25)(15,75,26)(16,76,27)(17,77,19)(18,78,20)(46,66,55)(47,67,56)(48,68,57)(49,69,58)(50,70,59)(51,71,60)(52,72,61)(53,64,62)(54,65,63), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,76,79)(74,77,80)(75,78,81), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,23,54)(2,24,46)(3,25,47)(4,26,48)(5,27,49)(6,19,50)(7,20,51)(8,21,52)(9,22,53)(10,72,29)(11,64,30)(12,65,31)(13,66,32)(14,67,33)(15,68,34)(16,69,35)(17,70,36)(18,71,28)(37,77,59)(38,78,60)(39,79,61)(40,80,62)(41,81,63)(42,73,55)(43,74,56)(44,75,57)(45,76,58) );

G=PermutationGroup([[(1,31,41),(2,32,42),(3,33,43),(4,34,44),(5,35,45),(6,36,37),(7,28,38),(8,29,39),(9,30,40),(10,79,21),(11,80,22),(12,81,23),(13,73,24),(14,74,25),(15,75,26),(16,76,27),(17,77,19),(18,78,20),(46,66,55),(47,67,56),(48,68,57),(49,69,58),(50,70,59),(51,71,60),(52,72,61),(53,64,62),(54,65,63)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,76,79),(74,77,80),(75,78,81)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78)], [(1,23,54),(2,24,46),(3,25,47),(4,26,48),(5,27,49),(6,19,50),(7,20,51),(8,21,52),(9,22,53),(10,72,29),(11,64,30),(12,65,31),(13,66,32),(14,67,33),(15,68,34),(16,69,35),(17,70,36),(18,71,28),(37,77,59),(38,78,60),(39,79,61),(40,80,62),(41,81,63),(42,73,55),(43,74,56),(44,75,57),(45,76,58)]])

C3×C9○He3 is a maximal subgroup of   C9○He33S3  C9○He34S3

99 conjugacy classes

class 1 3A···3H3I···3AF9A···9R9S···9BN
order13···33···39···99···9
size11···13···31···13···3

99 irreducible representations

dim111113
type+
imageC1C3C3C3C3C9○He3
kernelC3×C9○He3C32×C9C3×He3C3×3- 1+2C9○He3C3
# reps182165418

Matrix representation of C3×C9○He3 in GL4(𝔽19) generated by

11000
0700
0070
0007
,
1000
01600
00160
00016
,
11000
0100
01870
07011
,
1000
0700
0070
0007
,
1000
01130
0181811
0780
G:=sub<GL(4,GF(19))| [11,0,0,0,0,7,0,0,0,0,7,0,0,0,0,7],[1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[11,0,0,0,0,1,18,7,0,0,7,0,0,0,0,11],[1,0,0,0,0,7,0,0,0,0,7,0,0,0,0,7],[1,0,0,0,0,1,18,7,0,13,18,8,0,0,11,0] >;

C3×C9○He3 in GAP, Magma, Sage, TeX

C_3\times C_9\circ {\rm He}_3
% in TeX

G:=Group("C3xC9oHe3");
// GroupNames label

G:=SmallGroup(243,64);
// by ID

G=gap.SmallGroup(243,64);
# by ID

G:=PCGroup([5,-3,3,3,3,-3,841,147]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^9=c^3=e^3=1,d^1=b^6,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,d*e=e*d>;
// generators/relations

׿
×
𝔽