Copied to
clipboard

G = D141order 282 = 2·3·47

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D141, C47⋊S3, C3⋊D47, C1411C2, sometimes denoted D282 or Dih141 or Dih282, SmallGroup(282,3)

Series: Derived Chief Lower central Upper central

C1C141 — D141
C1C47C141 — D141
C141 — D141
C1

Generators and relations for D141
 G = < a,b | a141=b2=1, bab=a-1 >

141C2
47S3
3D47

Smallest permutation representation of D141
On 141 points
Generators in S141
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141)
(1 141)(2 140)(3 139)(4 138)(5 137)(6 136)(7 135)(8 134)(9 133)(10 132)(11 131)(12 130)(13 129)(14 128)(15 127)(16 126)(17 125)(18 124)(19 123)(20 122)(21 121)(22 120)(23 119)(24 118)(25 117)(26 116)(27 115)(28 114)(29 113)(30 112)(31 111)(32 110)(33 109)(34 108)(35 107)(36 106)(37 105)(38 104)(39 103)(40 102)(41 101)(42 100)(43 99)(44 98)(45 97)(46 96)(47 95)(48 94)(49 93)(50 92)(51 91)(52 90)(53 89)(54 88)(55 87)(56 86)(57 85)(58 84)(59 83)(60 82)(61 81)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)

G:=sub<Sym(141)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141), (1,141)(2,140)(3,139)(4,138)(5,137)(6,136)(7,135)(8,134)(9,133)(10,132)(11,131)(12,130)(13,129)(14,128)(15,127)(16,126)(17,125)(18,124)(19,123)(20,122)(21,121)(22,120)(23,119)(24,118)(25,117)(26,116)(27,115)(28,114)(29,113)(30,112)(31,111)(32,110)(33,109)(34,108)(35,107)(36,106)(37,105)(38,104)(39,103)(40,102)(41,101)(42,100)(43,99)(44,98)(45,97)(46,96)(47,95)(48,94)(49,93)(50,92)(51,91)(52,90)(53,89)(54,88)(55,87)(56,86)(57,85)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141), (1,141)(2,140)(3,139)(4,138)(5,137)(6,136)(7,135)(8,134)(9,133)(10,132)(11,131)(12,130)(13,129)(14,128)(15,127)(16,126)(17,125)(18,124)(19,123)(20,122)(21,121)(22,120)(23,119)(24,118)(25,117)(26,116)(27,115)(28,114)(29,113)(30,112)(31,111)(32,110)(33,109)(34,108)(35,107)(36,106)(37,105)(38,104)(39,103)(40,102)(41,101)(42,100)(43,99)(44,98)(45,97)(46,96)(47,95)(48,94)(49,93)(50,92)(51,91)(52,90)(53,89)(54,88)(55,87)(56,86)(57,85)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141)], [(1,141),(2,140),(3,139),(4,138),(5,137),(6,136),(7,135),(8,134),(9,133),(10,132),(11,131),(12,130),(13,129),(14,128),(15,127),(16,126),(17,125),(18,124),(19,123),(20,122),(21,121),(22,120),(23,119),(24,118),(25,117),(26,116),(27,115),(28,114),(29,113),(30,112),(31,111),(32,110),(33,109),(34,108),(35,107),(36,106),(37,105),(38,104),(39,103),(40,102),(41,101),(42,100),(43,99),(44,98),(45,97),(46,96),(47,95),(48,94),(49,93),(50,92),(51,91),(52,90),(53,89),(54,88),(55,87),(56,86),(57,85),(58,84),(59,83),(60,82),(61,81),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72)])

72 conjugacy classes

class 1  2  3 47A···47W141A···141AT
order12347···47141···141
size114122···22···2

72 irreducible representations

dim11222
type+++++
imageC1C2S3D47D141
kernelD141C141C47C3C1
# reps1112346

Matrix representation of D141 in GL2(𝔽283) generated by

219274
972
,
219274
17264
G:=sub<GL(2,GF(283))| [219,9,274,72],[219,172,274,64] >;

D141 in GAP, Magma, Sage, TeX

D_{141}
% in TeX

G:=Group("D141");
// GroupNames label

G:=SmallGroup(282,3);
// by ID

G=gap.SmallGroup(282,3);
# by ID

G:=PCGroup([3,-2,-3,-47,25,2486]);
// Polycyclic

G:=Group<a,b|a^141=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D141 in TeX

׿
×
𝔽