Copied to
clipboard

G = D4×C35order 280 = 23·5·7

Direct product of C35 and D4

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C35, C4⋊C70, C22⋊C70, C203C14, C283C10, C1407C2, C70.23C22, (C2×C70)⋊1C2, (C2×C14)⋊1C10, (C2×C10)⋊1C14, C2.1(C2×C70), C14.6(C2×C10), C10.6(C2×C14), SmallGroup(280,30)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C35
C1C2C14C70C2×C70 — D4×C35
C1C2 — D4×C35
C1C70 — D4×C35

Generators and relations for D4×C35
 G = < a,b,c | a35=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

2C2
2C2
2C10
2C10
2C14
2C14
2C70
2C70

Smallest permutation representation of D4×C35
On 140 points
Generators in S140
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)(36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 52 92 115)(2 53 93 116)(3 54 94 117)(4 55 95 118)(5 56 96 119)(6 57 97 120)(7 58 98 121)(8 59 99 122)(9 60 100 123)(10 61 101 124)(11 62 102 125)(12 63 103 126)(13 64 104 127)(14 65 105 128)(15 66 71 129)(16 67 72 130)(17 68 73 131)(18 69 74 132)(19 70 75 133)(20 36 76 134)(21 37 77 135)(22 38 78 136)(23 39 79 137)(24 40 80 138)(25 41 81 139)(26 42 82 140)(27 43 83 106)(28 44 84 107)(29 45 85 108)(30 46 86 109)(31 47 87 110)(32 48 88 111)(33 49 89 112)(34 50 90 113)(35 51 91 114)
(1 115)(2 116)(3 117)(4 118)(5 119)(6 120)(7 121)(8 122)(9 123)(10 124)(11 125)(12 126)(13 127)(14 128)(15 129)(16 130)(17 131)(18 132)(19 133)(20 134)(21 135)(22 136)(23 137)(24 138)(25 139)(26 140)(27 106)(28 107)(29 108)(30 109)(31 110)(32 111)(33 112)(34 113)(35 114)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(51 91)(52 92)(53 93)(54 94)(55 95)(56 96)(57 97)(58 98)(59 99)(60 100)(61 101)(62 102)(63 103)(64 104)(65 105)(66 71)(67 72)(68 73)(69 74)(70 75)

G:=sub<Sym(140)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,52,92,115)(2,53,93,116)(3,54,94,117)(4,55,95,118)(5,56,96,119)(6,57,97,120)(7,58,98,121)(8,59,99,122)(9,60,100,123)(10,61,101,124)(11,62,102,125)(12,63,103,126)(13,64,104,127)(14,65,105,128)(15,66,71,129)(16,67,72,130)(17,68,73,131)(18,69,74,132)(19,70,75,133)(20,36,76,134)(21,37,77,135)(22,38,78,136)(23,39,79,137)(24,40,80,138)(25,41,81,139)(26,42,82,140)(27,43,83,106)(28,44,84,107)(29,45,85,108)(30,46,86,109)(31,47,87,110)(32,48,88,111)(33,49,89,112)(34,50,90,113)(35,51,91,114), (1,115)(2,116)(3,117)(4,118)(5,119)(6,120)(7,121)(8,122)(9,123)(10,124)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,137)(24,138)(25,139)(26,140)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,71)(67,72)(68,73)(69,74)(70,75)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,52,92,115)(2,53,93,116)(3,54,94,117)(4,55,95,118)(5,56,96,119)(6,57,97,120)(7,58,98,121)(8,59,99,122)(9,60,100,123)(10,61,101,124)(11,62,102,125)(12,63,103,126)(13,64,104,127)(14,65,105,128)(15,66,71,129)(16,67,72,130)(17,68,73,131)(18,69,74,132)(19,70,75,133)(20,36,76,134)(21,37,77,135)(22,38,78,136)(23,39,79,137)(24,40,80,138)(25,41,81,139)(26,42,82,140)(27,43,83,106)(28,44,84,107)(29,45,85,108)(30,46,86,109)(31,47,87,110)(32,48,88,111)(33,49,89,112)(34,50,90,113)(35,51,91,114), (1,115)(2,116)(3,117)(4,118)(5,119)(6,120)(7,121)(8,122)(9,123)(10,124)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,137)(24,138)(25,139)(26,140)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,71)(67,72)(68,73)(69,74)(70,75) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35),(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,52,92,115),(2,53,93,116),(3,54,94,117),(4,55,95,118),(5,56,96,119),(6,57,97,120),(7,58,98,121),(8,59,99,122),(9,60,100,123),(10,61,101,124),(11,62,102,125),(12,63,103,126),(13,64,104,127),(14,65,105,128),(15,66,71,129),(16,67,72,130),(17,68,73,131),(18,69,74,132),(19,70,75,133),(20,36,76,134),(21,37,77,135),(22,38,78,136),(23,39,79,137),(24,40,80,138),(25,41,81,139),(26,42,82,140),(27,43,83,106),(28,44,84,107),(29,45,85,108),(30,46,86,109),(31,47,87,110),(32,48,88,111),(33,49,89,112),(34,50,90,113),(35,51,91,114)], [(1,115),(2,116),(3,117),(4,118),(5,119),(6,120),(7,121),(8,122),(9,123),(10,124),(11,125),(12,126),(13,127),(14,128),(15,129),(16,130),(17,131),(18,132),(19,133),(20,134),(21,135),(22,136),(23,137),(24,138),(25,139),(26,140),(27,106),(28,107),(29,108),(30,109),(31,110),(32,111),(33,112),(34,113),(35,114),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(51,91),(52,92),(53,93),(54,94),(55,95),(56,96),(57,97),(58,98),(59,99),(60,100),(61,101),(62,102),(63,103),(64,104),(65,105),(66,71),(67,72),(68,73),(69,74),(70,75)]])

175 conjugacy classes

class 1 2A2B2C 4 5A5B5C5D7A···7F10A10B10C10D10E···10L14A···14F14G···14R20A20B20C20D28A···28F35A···35X70A···70X70Y···70BT140A···140X
order1222455557···71010101010···1014···1414···142020202028···2835···3570···7070···70140···140
size1122211111···111112···21···12···222222···21···11···12···22···2

175 irreducible representations

dim1111111111112222
type++++
imageC1C2C2C5C7C10C10C14C14C35C70C70D4C5×D4C7×D4D4×C35
kernelD4×C35C140C2×C70C7×D4C5×D4C28C2×C14C20C2×C10D4C4C22C35C7C5C1
# reps112464861224244814624

Matrix representation of D4×C35 in GL4(𝔽281) generated by

232000
07900
0010
0001
,
1000
0100
0038279
0020243
,
280000
028000
0038279
0019243
G:=sub<GL(4,GF(281))| [232,0,0,0,0,79,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,38,20,0,0,279,243],[280,0,0,0,0,280,0,0,0,0,38,19,0,0,279,243] >;

D4×C35 in GAP, Magma, Sage, TeX

D_4\times C_{35}
% in TeX

G:=Group("D4xC35");
// GroupNames label

G:=SmallGroup(280,30);
// by ID

G=gap.SmallGroup(280,30);
# by ID

G:=PCGroup([5,-2,-2,-5,-7,-2,1421]);
// Polycyclic

G:=Group<a,b,c|a^35=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D4×C35 in TeX

׿
×
𝔽