direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D7×C20, C28⋊2C10, C140⋊5C2, D14.C10, Dic7⋊2C10, C10.14D14, C70.14C22, C7⋊1(C2×C20), C35⋊8(C2×C4), C2.1(C10×D7), C14.2(C2×C10), (C5×Dic7)⋊5C2, (C10×D7).2C2, SmallGroup(280,15)
Series: Derived ►Chief ►Lower central ►Upper central
| C7 — D7×C20 |
Generators and relations for D7×C20
G = < a,b,c | a20=b7=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 57 121 104 37 95 68)(2 58 122 105 38 96 69)(3 59 123 106 39 97 70)(4 60 124 107 40 98 71)(5 41 125 108 21 99 72)(6 42 126 109 22 100 73)(7 43 127 110 23 81 74)(8 44 128 111 24 82 75)(9 45 129 112 25 83 76)(10 46 130 113 26 84 77)(11 47 131 114 27 85 78)(12 48 132 115 28 86 79)(13 49 133 116 29 87 80)(14 50 134 117 30 88 61)(15 51 135 118 31 89 62)(16 52 136 119 32 90 63)(17 53 137 120 33 91 64)(18 54 138 101 34 92 65)(19 55 139 102 35 93 66)(20 56 140 103 36 94 67)
(1 68)(2 69)(3 70)(4 71)(5 72)(6 73)(7 74)(8 75)(9 76)(10 77)(11 78)(12 79)(13 80)(14 61)(15 62)(16 63)(17 64)(18 65)(19 66)(20 67)(21 125)(22 126)(23 127)(24 128)(25 129)(26 130)(27 131)(28 132)(29 133)(30 134)(31 135)(32 136)(33 137)(34 138)(35 139)(36 140)(37 121)(38 122)(39 123)(40 124)(41 99)(42 100)(43 81)(44 82)(45 83)(46 84)(47 85)(48 86)(49 87)(50 88)(51 89)(52 90)(53 91)(54 92)(55 93)(56 94)(57 95)(58 96)(59 97)(60 98)
G:=sub<Sym(140)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,57,121,104,37,95,68)(2,58,122,105,38,96,69)(3,59,123,106,39,97,70)(4,60,124,107,40,98,71)(5,41,125,108,21,99,72)(6,42,126,109,22,100,73)(7,43,127,110,23,81,74)(8,44,128,111,24,82,75)(9,45,129,112,25,83,76)(10,46,130,113,26,84,77)(11,47,131,114,27,85,78)(12,48,132,115,28,86,79)(13,49,133,116,29,87,80)(14,50,134,117,30,88,61)(15,51,135,118,31,89,62)(16,52,136,119,32,90,63)(17,53,137,120,33,91,64)(18,54,138,101,34,92,65)(19,55,139,102,35,93,66)(20,56,140,103,36,94,67), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,61)(15,62)(16,63)(17,64)(18,65)(19,66)(20,67)(21,125)(22,126)(23,127)(24,128)(25,129)(26,130)(27,131)(28,132)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,121)(38,122)(39,123)(40,124)(41,99)(42,100)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(57,95)(58,96)(59,97)(60,98)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,57,121,104,37,95,68)(2,58,122,105,38,96,69)(3,59,123,106,39,97,70)(4,60,124,107,40,98,71)(5,41,125,108,21,99,72)(6,42,126,109,22,100,73)(7,43,127,110,23,81,74)(8,44,128,111,24,82,75)(9,45,129,112,25,83,76)(10,46,130,113,26,84,77)(11,47,131,114,27,85,78)(12,48,132,115,28,86,79)(13,49,133,116,29,87,80)(14,50,134,117,30,88,61)(15,51,135,118,31,89,62)(16,52,136,119,32,90,63)(17,53,137,120,33,91,64)(18,54,138,101,34,92,65)(19,55,139,102,35,93,66)(20,56,140,103,36,94,67), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,61)(15,62)(16,63)(17,64)(18,65)(19,66)(20,67)(21,125)(22,126)(23,127)(24,128)(25,129)(26,130)(27,131)(28,132)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,121)(38,122)(39,123)(40,124)(41,99)(42,100)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(57,95)(58,96)(59,97)(60,98) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,57,121,104,37,95,68),(2,58,122,105,38,96,69),(3,59,123,106,39,97,70),(4,60,124,107,40,98,71),(5,41,125,108,21,99,72),(6,42,126,109,22,100,73),(7,43,127,110,23,81,74),(8,44,128,111,24,82,75),(9,45,129,112,25,83,76),(10,46,130,113,26,84,77),(11,47,131,114,27,85,78),(12,48,132,115,28,86,79),(13,49,133,116,29,87,80),(14,50,134,117,30,88,61),(15,51,135,118,31,89,62),(16,52,136,119,32,90,63),(17,53,137,120,33,91,64),(18,54,138,101,34,92,65),(19,55,139,102,35,93,66),(20,56,140,103,36,94,67)], [(1,68),(2,69),(3,70),(4,71),(5,72),(6,73),(7,74),(8,75),(9,76),(10,77),(11,78),(12,79),(13,80),(14,61),(15,62),(16,63),(17,64),(18,65),(19,66),(20,67),(21,125),(22,126),(23,127),(24,128),(25,129),(26,130),(27,131),(28,132),(29,133),(30,134),(31,135),(32,136),(33,137),(34,138),(35,139),(36,140),(37,121),(38,122),(39,123),(40,124),(41,99),(42,100),(43,81),(44,82),(45,83),(46,84),(47,85),(48,86),(49,87),(50,88),(51,89),(52,90),(53,91),(54,92),(55,93),(56,94),(57,95),(58,96),(59,97),(60,98)]])
100 conjugacy classes
| class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 7A | 7B | 7C | 10A | 10B | 10C | 10D | 10E | ··· | 10L | 14A | 14B | 14C | 20A | ··· | 20H | 20I | ··· | 20P | 28A | ··· | 28F | 35A | ··· | 35L | 70A | ··· | 70L | 140A | ··· | 140X |
| order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 7 | 7 | 7 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 14 | 14 | 14 | 20 | ··· | 20 | 20 | ··· | 20 | 28 | ··· | 28 | 35 | ··· | 35 | 70 | ··· | 70 | 140 | ··· | 140 |
| size | 1 | 1 | 7 | 7 | 1 | 1 | 7 | 7 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 7 | ··· | 7 | 2 | 2 | 2 | 1 | ··· | 1 | 7 | ··· | 7 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
100 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | ||||||||||
| image | C1 | C2 | C2 | C2 | C4 | C5 | C10 | C10 | C10 | C20 | D7 | D14 | C4×D7 | C5×D7 | C10×D7 | D7×C20 |
| kernel | D7×C20 | C5×Dic7 | C140 | C10×D7 | C5×D7 | C4×D7 | Dic7 | C28 | D14 | D7 | C20 | C10 | C5 | C4 | C2 | C1 |
| # reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 16 | 3 | 3 | 6 | 12 | 12 | 24 |
Matrix representation of D7×C20 ►in GL2(𝔽41) generated by
| 8 | 0 |
| 0 | 8 |
| 40 | 20 |
| 32 | 15 |
| 26 | 34 |
| 32 | 15 |
G:=sub<GL(2,GF(41))| [8,0,0,8],[40,32,20,15],[26,32,34,15] >;
D7×C20 in GAP, Magma, Sage, TeX
D_7\times C_{20} % in TeX
G:=Group("D7xC20"); // GroupNames label
G:=SmallGroup(280,15);
// by ID
G=gap.SmallGroup(280,15);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-7,106,6004]);
// Polycyclic
G:=Group<a,b,c|a^20=b^7=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export