direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C5×D7, C7⋊C10, C35⋊2C2, SmallGroup(70,2)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — C5×D7 |
Generators and relations for C5×D7
G = < a,b,c | a5=b7=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of C5×D7
class | 1 | 2 | 5A | 5B | 5C | 5D | 7A | 7B | 7C | 10A | 10B | 10C | 10D | 35A | 35B | 35C | 35D | 35E | 35F | 35G | 35H | 35I | 35J | 35K | 35L | |
size | 1 | 7 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | 1 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | ζ53 | ζ53 | ζ5 | ζ52 | ζ54 | ζ54 | ζ54 | ζ5 | ζ52 | ζ52 | ζ5 | ζ53 | linear of order 10 |
ρ4 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ52 | ζ52 | ζ54 | ζ53 | ζ5 | ζ5 | ζ5 | ζ54 | ζ53 | ζ53 | ζ54 | ζ52 | linear of order 5 |
ρ5 | 1 | -1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | 1 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | ζ54 | ζ54 | ζ53 | ζ5 | ζ52 | ζ52 | ζ52 | ζ53 | ζ5 | ζ5 | ζ53 | ζ54 | linear of order 10 |
ρ6 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ5 | ζ5 | ζ52 | ζ54 | ζ53 | ζ53 | ζ53 | ζ52 | ζ54 | ζ54 | ζ52 | ζ5 | linear of order 5 |
ρ7 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ54 | ζ54 | ζ53 | ζ5 | ζ52 | ζ52 | ζ52 | ζ53 | ζ5 | ζ5 | ζ53 | ζ54 | linear of order 5 |
ρ8 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ53 | ζ53 | ζ5 | ζ52 | ζ54 | ζ54 | ζ54 | ζ5 | ζ52 | ζ52 | ζ5 | ζ53 | linear of order 5 |
ρ9 | 1 | -1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | 1 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | ζ5 | ζ5 | ζ52 | ζ54 | ζ53 | ζ53 | ζ53 | ζ52 | ζ54 | ζ54 | ζ52 | ζ5 | linear of order 10 |
ρ10 | 1 | -1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | 1 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | ζ52 | ζ52 | ζ54 | ζ53 | ζ5 | ζ5 | ζ5 | ζ54 | ζ53 | ζ53 | ζ54 | ζ52 | linear of order 10 |
ρ11 | 2 | 0 | 2 | 2 | 2 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ12 | 2 | 0 | 2 | 2 | 2 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ13 | 2 | 0 | 2 | 2 | 2 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ14 | 2 | 0 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | ζ53ζ75+ζ53ζ72 | ζ53ζ76+ζ53ζ7 | ζ5ζ76+ζ5ζ7 | ζ52ζ74+ζ52ζ73 | ζ54ζ74+ζ54ζ73 | ζ54ζ76+ζ54ζ7 | ζ54ζ75+ζ54ζ72 | ζ5ζ74+ζ5ζ73 | ζ52ζ76+ζ52ζ7 | ζ52ζ75+ζ52ζ72 | ζ5ζ75+ζ5ζ72 | ζ53ζ74+ζ53ζ73 | complex faithful |
ρ15 | 2 | 0 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | ζ53ζ74+ζ53ζ73 | ζ53ζ75+ζ53ζ72 | ζ5ζ75+ζ5ζ72 | ζ52ζ76+ζ52ζ7 | ζ54ζ76+ζ54ζ7 | ζ54ζ75+ζ54ζ72 | ζ54ζ74+ζ54ζ73 | ζ5ζ76+ζ5ζ7 | ζ52ζ75+ζ52ζ72 | ζ52ζ74+ζ52ζ73 | ζ5ζ74+ζ5ζ73 | ζ53ζ76+ζ53ζ7 | complex faithful |
ρ16 | 2 | 0 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | ζ54ζ76+ζ54ζ7 | ζ54ζ74+ζ54ζ73 | ζ53ζ74+ζ53ζ73 | ζ5ζ75+ζ5ζ72 | ζ52ζ75+ζ52ζ72 | ζ52ζ74+ζ52ζ73 | ζ52ζ76+ζ52ζ7 | ζ53ζ75+ζ53ζ72 | ζ5ζ74+ζ5ζ73 | ζ5ζ76+ζ5ζ7 | ζ53ζ76+ζ53ζ7 | ζ54ζ75+ζ54ζ72 | complex faithful |
ρ17 | 2 | 0 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | ζ5ζ75+ζ5ζ72 | ζ5ζ76+ζ5ζ7 | ζ52ζ76+ζ52ζ7 | ζ54ζ74+ζ54ζ73 | ζ53ζ74+ζ53ζ73 | ζ53ζ76+ζ53ζ7 | ζ53ζ75+ζ53ζ72 | ζ52ζ74+ζ52ζ73 | ζ54ζ76+ζ54ζ7 | ζ54ζ75+ζ54ζ72 | ζ52ζ75+ζ52ζ72 | ζ5ζ74+ζ5ζ73 | complex faithful |
ρ18 | 2 | 0 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | ζ5ζ74+ζ5ζ73 | ζ5ζ75+ζ5ζ72 | ζ52ζ75+ζ52ζ72 | ζ54ζ76+ζ54ζ7 | ζ53ζ76+ζ53ζ7 | ζ53ζ75+ζ53ζ72 | ζ53ζ74+ζ53ζ73 | ζ52ζ76+ζ52ζ7 | ζ54ζ75+ζ54ζ72 | ζ54ζ74+ζ54ζ73 | ζ52ζ74+ζ52ζ73 | ζ5ζ76+ζ5ζ7 | complex faithful |
ρ19 | 2 | 0 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | ζ53ζ76+ζ53ζ7 | ζ53ζ74+ζ53ζ73 | ζ5ζ74+ζ5ζ73 | ζ52ζ75+ζ52ζ72 | ζ54ζ75+ζ54ζ72 | ζ54ζ74+ζ54ζ73 | ζ54ζ76+ζ54ζ7 | ζ5ζ75+ζ5ζ72 | ζ52ζ74+ζ52ζ73 | ζ52ζ76+ζ52ζ7 | ζ5ζ76+ζ5ζ7 | ζ53ζ75+ζ53ζ72 | complex faithful |
ρ20 | 2 | 0 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | ζ5ζ76+ζ5ζ7 | ζ5ζ74+ζ5ζ73 | ζ52ζ74+ζ52ζ73 | ζ54ζ75+ζ54ζ72 | ζ53ζ75+ζ53ζ72 | ζ53ζ74+ζ53ζ73 | ζ53ζ76+ζ53ζ7 | ζ52ζ75+ζ52ζ72 | ζ54ζ74+ζ54ζ73 | ζ54ζ76+ζ54ζ7 | ζ52ζ76+ζ52ζ7 | ζ5ζ75+ζ5ζ72 | complex faithful |
ρ21 | 2 | 0 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | ζ54ζ75+ζ54ζ72 | ζ54ζ76+ζ54ζ7 | ζ53ζ76+ζ53ζ7 | ζ5ζ74+ζ5ζ73 | ζ52ζ74+ζ52ζ73 | ζ52ζ76+ζ52ζ7 | ζ52ζ75+ζ52ζ72 | ζ53ζ74+ζ53ζ73 | ζ5ζ76+ζ5ζ7 | ζ5ζ75+ζ5ζ72 | ζ53ζ75+ζ53ζ72 | ζ54ζ74+ζ54ζ73 | complex faithful |
ρ22 | 2 | 0 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | ζ54ζ74+ζ54ζ73 | ζ54ζ75+ζ54ζ72 | ζ53ζ75+ζ53ζ72 | ζ5ζ76+ζ5ζ7 | ζ52ζ76+ζ52ζ7 | ζ52ζ75+ζ52ζ72 | ζ52ζ74+ζ52ζ73 | ζ53ζ76+ζ53ζ7 | ζ5ζ75+ζ5ζ72 | ζ5ζ74+ζ5ζ73 | ζ53ζ74+ζ53ζ73 | ζ54ζ76+ζ54ζ7 | complex faithful |
ρ23 | 2 | 0 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | ζ52ζ75+ζ52ζ72 | ζ52ζ76+ζ52ζ7 | ζ54ζ76+ζ54ζ7 | ζ53ζ74+ζ53ζ73 | ζ5ζ74+ζ5ζ73 | ζ5ζ76+ζ5ζ7 | ζ5ζ75+ζ5ζ72 | ζ54ζ74+ζ54ζ73 | ζ53ζ76+ζ53ζ7 | ζ53ζ75+ζ53ζ72 | ζ54ζ75+ζ54ζ72 | ζ52ζ74+ζ52ζ73 | complex faithful |
ρ24 | 2 | 0 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | ζ52ζ76+ζ52ζ7 | ζ52ζ74+ζ52ζ73 | ζ54ζ74+ζ54ζ73 | ζ53ζ75+ζ53ζ72 | ζ5ζ75+ζ5ζ72 | ζ5ζ74+ζ5ζ73 | ζ5ζ76+ζ5ζ7 | ζ54ζ75+ζ54ζ72 | ζ53ζ74+ζ53ζ73 | ζ53ζ76+ζ53ζ7 | ζ54ζ76+ζ54ζ7 | ζ52ζ75+ζ52ζ72 | complex faithful |
ρ25 | 2 | 0 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | ζ52ζ74+ζ52ζ73 | ζ52ζ75+ζ52ζ72 | ζ54ζ75+ζ54ζ72 | ζ53ζ76+ζ53ζ7 | ζ5ζ76+ζ5ζ7 | ζ5ζ75+ζ5ζ72 | ζ5ζ74+ζ5ζ73 | ζ54ζ76+ζ54ζ7 | ζ53ζ75+ζ53ζ72 | ζ53ζ74+ζ53ζ73 | ζ54ζ74+ζ54ζ73 | ζ52ζ76+ζ52ζ7 | complex faithful |
(1 34 27 20 13)(2 35 28 21 14)(3 29 22 15 8)(4 30 23 16 9)(5 31 24 17 10)(6 32 25 18 11)(7 33 26 19 12)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)
G:=sub<Sym(35)| (1,34,27,20,13)(2,35,28,21,14)(3,29,22,15,8)(4,30,23,16,9)(5,31,24,17,10)(6,32,25,18,11)(7,33,26,19,12), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)>;
G:=Group( (1,34,27,20,13)(2,35,28,21,14)(3,29,22,15,8)(4,30,23,16,9)(5,31,24,17,10)(6,32,25,18,11)(7,33,26,19,12), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34) );
G=PermutationGroup([[(1,34,27,20,13),(2,35,28,21,14),(3,29,22,15,8),(4,30,23,16,9),(5,31,24,17,10),(6,32,25,18,11),(7,33,26,19,12)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34)]])
Matrix representation of C5×D7 ►in GL2(𝔽41) generated by
16 | 0 |
0 | 16 |
15 | 1 |
25 | 40 |
40 | 0 |
16 | 1 |
G:=sub<GL(2,GF(41))| [16,0,0,16],[15,25,1,40],[40,16,0,1] >;
C5×D7 in GAP, Magma, Sage, TeX
C_5\times D_7
% in TeX
G:=Group("C5xD7");
// GroupNames label
G:=SmallGroup(70,2);
// by ID
G=gap.SmallGroup(70,2);
# by ID
G:=PCGroup([3,-2,-5,-7,542]);
// Polycyclic
G:=Group<a,b,c|a^5=b^7=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C5×D7 in TeX
Character table of C5×D7 in TeX