Extensions 1→N→G→Q→1 with N=C173C8 and Q=C2

Direct product G=N×Q with N=C173C8 and Q=C2

Semidirect products G=N:Q with N=C173C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C173C81C2 = D4⋊D17φ: C2/C1C2 ⊆ Out C173C81364+C17:3C8:1C2272,15
C173C82C2 = D4.D17φ: C2/C1C2 ⊆ Out C173C81364-C17:3C8:2C2272,16
C173C83C2 = Q8⋊D17φ: C2/C1C2 ⊆ Out C173C81364+C17:3C8:3C2272,17
C173C84C2 = C8⋊D17φ: C2/C1C2 ⊆ Out C173C81362C17:3C8:4C2272,5
C173C85C2 = C68.4C4φ: C2/C1C2 ⊆ Out C173C81362C17:3C8:5C2272,10
C173C86C2 = C8×D17φ: trivial image1362C17:3C8:6C2272,4

Non-split extensions G=N.Q with N=C173C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C173C8.1C2 = C17⋊Q16φ: C2/C1C2 ⊆ Out C173C82724-C17:3C8.1C2272,18
C173C8.2C2 = C173C16φ: C2/C1C2 ⊆ Out C173C82724C17:3C8.2C2272,3