Copied to
clipboard

G = D4⋊D17order 272 = 24·17

The semidirect product of D4 and D17 acting via D17/C17=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4⋊D17, C172D8, D682C2, C4.1D34, C34.7D4, C68.1C22, C173C81C2, (D4×C17)⋊1C2, C2.4(C17⋊D4), SmallGroup(272,15)

Series: Derived Chief Lower central Upper central

C1C68 — D4⋊D17
C1C17C34C68D68 — D4⋊D17
C17C34C68 — D4⋊D17
C1C2C4D4

Generators and relations for D4⋊D17
 G = < a,b,c,d | a4=b2=c17=d2=1, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=c-1 >

4C2
68C2
2C22
34C22
4D17
4C34
17C8
17D4
2D34
2C2×C34
17D8

Smallest permutation representation of D4⋊D17
On 136 points
Generators in S136
(1 55 32 44)(2 56 33 45)(3 57 34 46)(4 58 18 47)(5 59 19 48)(6 60 20 49)(7 61 21 50)(8 62 22 51)(9 63 23 35)(10 64 24 36)(11 65 25 37)(12 66 26 38)(13 67 27 39)(14 68 28 40)(15 52 29 41)(16 53 30 42)(17 54 31 43)(69 109 94 130)(70 110 95 131)(71 111 96 132)(72 112 97 133)(73 113 98 134)(74 114 99 135)(75 115 100 136)(76 116 101 120)(77 117 102 121)(78 118 86 122)(79 119 87 123)(80 103 88 124)(81 104 89 125)(82 105 90 126)(83 106 91 127)(84 107 92 128)(85 108 93 129)
(1 123)(2 124)(3 125)(4 126)(5 127)(6 128)(7 129)(8 130)(9 131)(10 132)(11 133)(12 134)(13 135)(14 136)(15 120)(16 121)(17 122)(18 105)(19 106)(20 107)(21 108)(22 109)(23 110)(24 111)(25 112)(26 113)(27 114)(28 115)(29 116)(30 117)(31 118)(32 119)(33 103)(34 104)(35 70)(36 71)(37 72)(38 73)(39 74)(40 75)(41 76)(42 77)(43 78)(44 79)(45 80)(46 81)(47 82)(48 83)(49 84)(50 85)(51 69)(52 101)(53 102)(54 86)(55 87)(56 88)(57 89)(58 90)(59 91)(60 92)(61 93)(62 94)(63 95)(64 96)(65 97)(66 98)(67 99)(68 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(18 28)(19 27)(20 26)(21 25)(22 24)(29 34)(30 33)(31 32)(35 63)(36 62)(37 61)(38 60)(39 59)(40 58)(41 57)(42 56)(43 55)(44 54)(45 53)(46 52)(47 68)(48 67)(49 66)(50 65)(51 64)(69 111)(70 110)(71 109)(72 108)(73 107)(74 106)(75 105)(76 104)(77 103)(78 119)(79 118)(80 117)(81 116)(82 115)(83 114)(84 113)(85 112)(86 123)(87 122)(88 121)(89 120)(90 136)(91 135)(92 134)(93 133)(94 132)(95 131)(96 130)(97 129)(98 128)(99 127)(100 126)(101 125)(102 124)

G:=sub<Sym(136)| (1,55,32,44)(2,56,33,45)(3,57,34,46)(4,58,18,47)(5,59,19,48)(6,60,20,49)(7,61,21,50)(8,62,22,51)(9,63,23,35)(10,64,24,36)(11,65,25,37)(12,66,26,38)(13,67,27,39)(14,68,28,40)(15,52,29,41)(16,53,30,42)(17,54,31,43)(69,109,94,130)(70,110,95,131)(71,111,96,132)(72,112,97,133)(73,113,98,134)(74,114,99,135)(75,115,100,136)(76,116,101,120)(77,117,102,121)(78,118,86,122)(79,119,87,123)(80,103,88,124)(81,104,89,125)(82,105,90,126)(83,106,91,127)(84,107,92,128)(85,108,93,129), (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,120)(16,121)(17,122)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,103)(34,104)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(43,78)(44,79)(45,80)(46,81)(47,82)(48,83)(49,84)(50,85)(51,69)(52,101)(53,102)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,28)(19,27)(20,26)(21,25)(22,24)(29,34)(30,33)(31,32)(35,63)(36,62)(37,61)(38,60)(39,59)(40,58)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,68)(48,67)(49,66)(50,65)(51,64)(69,111)(70,110)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,119)(79,118)(80,117)(81,116)(82,115)(83,114)(84,113)(85,112)(86,123)(87,122)(88,121)(89,120)(90,136)(91,135)(92,134)(93,133)(94,132)(95,131)(96,130)(97,129)(98,128)(99,127)(100,126)(101,125)(102,124)>;

G:=Group( (1,55,32,44)(2,56,33,45)(3,57,34,46)(4,58,18,47)(5,59,19,48)(6,60,20,49)(7,61,21,50)(8,62,22,51)(9,63,23,35)(10,64,24,36)(11,65,25,37)(12,66,26,38)(13,67,27,39)(14,68,28,40)(15,52,29,41)(16,53,30,42)(17,54,31,43)(69,109,94,130)(70,110,95,131)(71,111,96,132)(72,112,97,133)(73,113,98,134)(74,114,99,135)(75,115,100,136)(76,116,101,120)(77,117,102,121)(78,118,86,122)(79,119,87,123)(80,103,88,124)(81,104,89,125)(82,105,90,126)(83,106,91,127)(84,107,92,128)(85,108,93,129), (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,120)(16,121)(17,122)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,103)(34,104)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(43,78)(44,79)(45,80)(46,81)(47,82)(48,83)(49,84)(50,85)(51,69)(52,101)(53,102)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,28)(19,27)(20,26)(21,25)(22,24)(29,34)(30,33)(31,32)(35,63)(36,62)(37,61)(38,60)(39,59)(40,58)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,68)(48,67)(49,66)(50,65)(51,64)(69,111)(70,110)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,119)(79,118)(80,117)(81,116)(82,115)(83,114)(84,113)(85,112)(86,123)(87,122)(88,121)(89,120)(90,136)(91,135)(92,134)(93,133)(94,132)(95,131)(96,130)(97,129)(98,128)(99,127)(100,126)(101,125)(102,124) );

G=PermutationGroup([[(1,55,32,44),(2,56,33,45),(3,57,34,46),(4,58,18,47),(5,59,19,48),(6,60,20,49),(7,61,21,50),(8,62,22,51),(9,63,23,35),(10,64,24,36),(11,65,25,37),(12,66,26,38),(13,67,27,39),(14,68,28,40),(15,52,29,41),(16,53,30,42),(17,54,31,43),(69,109,94,130),(70,110,95,131),(71,111,96,132),(72,112,97,133),(73,113,98,134),(74,114,99,135),(75,115,100,136),(76,116,101,120),(77,117,102,121),(78,118,86,122),(79,119,87,123),(80,103,88,124),(81,104,89,125),(82,105,90,126),(83,106,91,127),(84,107,92,128),(85,108,93,129)], [(1,123),(2,124),(3,125),(4,126),(5,127),(6,128),(7,129),(8,130),(9,131),(10,132),(11,133),(12,134),(13,135),(14,136),(15,120),(16,121),(17,122),(18,105),(19,106),(20,107),(21,108),(22,109),(23,110),(24,111),(25,112),(26,113),(27,114),(28,115),(29,116),(30,117),(31,118),(32,119),(33,103),(34,104),(35,70),(36,71),(37,72),(38,73),(39,74),(40,75),(41,76),(42,77),(43,78),(44,79),(45,80),(46,81),(47,82),(48,83),(49,84),(50,85),(51,69),(52,101),(53,102),(54,86),(55,87),(56,88),(57,89),(58,90),(59,91),(60,92),(61,93),(62,94),(63,95),(64,96),(65,97),(66,98),(67,99),(68,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(18,28),(19,27),(20,26),(21,25),(22,24),(29,34),(30,33),(31,32),(35,63),(36,62),(37,61),(38,60),(39,59),(40,58),(41,57),(42,56),(43,55),(44,54),(45,53),(46,52),(47,68),(48,67),(49,66),(50,65),(51,64),(69,111),(70,110),(71,109),(72,108),(73,107),(74,106),(75,105),(76,104),(77,103),(78,119),(79,118),(80,117),(81,116),(82,115),(83,114),(84,113),(85,112),(86,123),(87,122),(88,121),(89,120),(90,136),(91,135),(92,134),(93,133),(94,132),(95,131),(96,130),(97,129),(98,128),(99,127),(100,126),(101,125),(102,124)]])

47 conjugacy classes

class 1 2A2B2C 4 8A8B17A···17H34A···34H34I···34X68A···68H
order122248817···1734···3434···3468···68
size11468234342···22···24···44···4

47 irreducible representations

dim1111222224
type+++++++++
imageC1C2C2C2D4D8D17D34C17⋊D4D4⋊D17
kernelD4⋊D17C173C8D68D4×C17C34C17D4C4C2C1
# reps11111288168

Matrix representation of D4⋊D17 in GL4(𝔽137) generated by

1000
0100
00114
0039136
,
136000
013600
00057
001250
,
0100
1363000
0010
0001
,
0100
1000
0010
0039136
G:=sub<GL(4,GF(137))| [1,0,0,0,0,1,0,0,0,0,1,39,0,0,14,136],[136,0,0,0,0,136,0,0,0,0,0,125,0,0,57,0],[0,136,0,0,1,30,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,39,0,0,0,136] >;

D4⋊D17 in GAP, Magma, Sage, TeX

D_4\rtimes D_{17}
% in TeX

G:=Group("D4:D17");
// GroupNames label

G:=SmallGroup(272,15);
// by ID

G=gap.SmallGroup(272,15);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,61,182,97,42,6404]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^17=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D4⋊D17 in TeX

׿
×
𝔽