Copied to
clipboard

G = C68.4C4order 272 = 24·17

1st non-split extension by C68 of C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C68.4C4, C4.Dic17, C4.15D34, C174M4(2), C22.Dic17, C68.15C22, C173C85C2, (C2×C34).5C4, (C2×C68).5C2, (C2×C4).2D17, C34.14(C2×C4), C2.3(C2×Dic17), SmallGroup(272,10)

Series: Derived Chief Lower central Upper central

C1C34 — C68.4C4
C1C17C34C68C173C8 — C68.4C4
C17C34 — C68.4C4
C1C4C2×C4

Generators and relations for C68.4C4
 G = < a,b | a68=1, b4=a34, bab-1=a-1 >

2C2
2C34
17C8
17C8
17M4(2)

Smallest permutation representation of C68.4C4
On 136 points
Generators in S136
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 90 18 73 35 124 52 107)(2 89 19 72 36 123 53 106)(3 88 20 71 37 122 54 105)(4 87 21 70 38 121 55 104)(5 86 22 69 39 120 56 103)(6 85 23 136 40 119 57 102)(7 84 24 135 41 118 58 101)(8 83 25 134 42 117 59 100)(9 82 26 133 43 116 60 99)(10 81 27 132 44 115 61 98)(11 80 28 131 45 114 62 97)(12 79 29 130 46 113 63 96)(13 78 30 129 47 112 64 95)(14 77 31 128 48 111 65 94)(15 76 32 127 49 110 66 93)(16 75 33 126 50 109 67 92)(17 74 34 125 51 108 68 91)

G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,90,18,73,35,124,52,107)(2,89,19,72,36,123,53,106)(3,88,20,71,37,122,54,105)(4,87,21,70,38,121,55,104)(5,86,22,69,39,120,56,103)(6,85,23,136,40,119,57,102)(7,84,24,135,41,118,58,101)(8,83,25,134,42,117,59,100)(9,82,26,133,43,116,60,99)(10,81,27,132,44,115,61,98)(11,80,28,131,45,114,62,97)(12,79,29,130,46,113,63,96)(13,78,30,129,47,112,64,95)(14,77,31,128,48,111,65,94)(15,76,32,127,49,110,66,93)(16,75,33,126,50,109,67,92)(17,74,34,125,51,108,68,91)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,90,18,73,35,124,52,107)(2,89,19,72,36,123,53,106)(3,88,20,71,37,122,54,105)(4,87,21,70,38,121,55,104)(5,86,22,69,39,120,56,103)(6,85,23,136,40,119,57,102)(7,84,24,135,41,118,58,101)(8,83,25,134,42,117,59,100)(9,82,26,133,43,116,60,99)(10,81,27,132,44,115,61,98)(11,80,28,131,45,114,62,97)(12,79,29,130,46,113,63,96)(13,78,30,129,47,112,64,95)(14,77,31,128,48,111,65,94)(15,76,32,127,49,110,66,93)(16,75,33,126,50,109,67,92)(17,74,34,125,51,108,68,91) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,90,18,73,35,124,52,107),(2,89,19,72,36,123,53,106),(3,88,20,71,37,122,54,105),(4,87,21,70,38,121,55,104),(5,86,22,69,39,120,56,103),(6,85,23,136,40,119,57,102),(7,84,24,135,41,118,58,101),(8,83,25,134,42,117,59,100),(9,82,26,133,43,116,60,99),(10,81,27,132,44,115,61,98),(11,80,28,131,45,114,62,97),(12,79,29,130,46,113,63,96),(13,78,30,129,47,112,64,95),(14,77,31,128,48,111,65,94),(15,76,32,127,49,110,66,93),(16,75,33,126,50,109,67,92),(17,74,34,125,51,108,68,91)]])

74 conjugacy classes

class 1 2A2B4A4B4C8A8B8C8D17A···17H34A···34X68A···68AF
order122444888817···1734···3468···68
size112112343434342···22···22···2

74 irreducible representations

dim11111222222
type++++-+-
imageC1C2C2C4C4M4(2)D17Dic17D34Dic17C68.4C4
kernelC68.4C4C173C8C2×C68C68C2×C34C17C2×C4C4C4C22C1
# reps121222888832

Matrix representation of C68.4C4 in GL2(𝔽137) generated by

440
0109
,
01
370
G:=sub<GL(2,GF(137))| [44,0,0,109],[0,37,1,0] >;

C68.4C4 in GAP, Magma, Sage, TeX

C_{68}._4C_4
% in TeX

G:=Group("C68.4C4");
// GroupNames label

G:=SmallGroup(272,10);
// by ID

G=gap.SmallGroup(272,10);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,20,101,42,6404]);
// Polycyclic

G:=Group<a,b|a^68=1,b^4=a^34,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C68.4C4 in TeX

׿
×
𝔽