Copied to
clipboard

G = Q8⋊D17order 272 = 24·17

The semidirect product of Q8 and D17 acting via D17/C17=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q8⋊D17, C34.9D4, C4.3D34, C173SD16, D68.2C2, C68.3C22, C173C83C2, (Q8×C17)⋊1C2, C2.6(C17⋊D4), SmallGroup(272,17)

Series: Derived Chief Lower central Upper central

C1C68 — Q8⋊D17
C1C17C34C68D68 — Q8⋊D17
C17C34C68 — Q8⋊D17
C1C2C4Q8

Generators and relations for Q8⋊D17
 G = < a,b,c,d | a4=c17=d2=1, b2=a2, bab-1=dad=a-1, ac=ca, bc=cb, dbd=a-1b, dcd=c-1 >

68C2
2C4
34C22
4D17
17C8
17D4
2D34
2C68
17SD16

Smallest permutation representation of Q8⋊D17
On 136 points
Generators in S136
(1 55 22 50)(2 56 23 51)(3 57 24 35)(4 58 25 36)(5 59 26 37)(6 60 27 38)(7 61 28 39)(8 62 29 40)(9 63 30 41)(10 64 31 42)(11 65 32 43)(12 66 33 44)(13 67 34 45)(14 68 18 46)(15 52 19 47)(16 53 20 48)(17 54 21 49)(69 117 101 129)(70 118 102 130)(71 119 86 131)(72 103 87 132)(73 104 88 133)(74 105 89 134)(75 106 90 135)(76 107 91 136)(77 108 92 120)(78 109 93 121)(79 110 94 122)(80 111 95 123)(81 112 96 124)(82 113 97 125)(83 114 98 126)(84 115 99 127)(85 116 100 128)
(1 92 22 77)(2 93 23 78)(3 94 24 79)(4 95 25 80)(5 96 26 81)(6 97 27 82)(7 98 28 83)(8 99 29 84)(9 100 30 85)(10 101 31 69)(11 102 32 70)(12 86 33 71)(13 87 34 72)(14 88 18 73)(15 89 19 74)(16 90 20 75)(17 91 21 76)(35 122 57 110)(36 123 58 111)(37 124 59 112)(38 125 60 113)(39 126 61 114)(40 127 62 115)(41 128 63 116)(42 129 64 117)(43 130 65 118)(44 131 66 119)(45 132 67 103)(46 133 68 104)(47 134 52 105)(48 135 53 106)(49 136 54 107)(50 120 55 108)(51 121 56 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(18 25)(19 24)(20 23)(21 22)(26 34)(27 33)(28 32)(29 31)(35 52)(36 68)(37 67)(38 66)(39 65)(40 64)(41 63)(42 62)(43 61)(44 60)(45 59)(46 58)(47 57)(48 56)(49 55)(50 54)(51 53)(69 115)(70 114)(71 113)(72 112)(73 111)(74 110)(75 109)(76 108)(77 107)(78 106)(79 105)(80 104)(81 103)(82 119)(83 118)(84 117)(85 116)(86 125)(87 124)(88 123)(89 122)(90 121)(91 120)(92 136)(93 135)(94 134)(95 133)(96 132)(97 131)(98 130)(99 129)(100 128)(101 127)(102 126)

G:=sub<Sym(136)| (1,55,22,50)(2,56,23,51)(3,57,24,35)(4,58,25,36)(5,59,26,37)(6,60,27,38)(7,61,28,39)(8,62,29,40)(9,63,30,41)(10,64,31,42)(11,65,32,43)(12,66,33,44)(13,67,34,45)(14,68,18,46)(15,52,19,47)(16,53,20,48)(17,54,21,49)(69,117,101,129)(70,118,102,130)(71,119,86,131)(72,103,87,132)(73,104,88,133)(74,105,89,134)(75,106,90,135)(76,107,91,136)(77,108,92,120)(78,109,93,121)(79,110,94,122)(80,111,95,123)(81,112,96,124)(82,113,97,125)(83,114,98,126)(84,115,99,127)(85,116,100,128), (1,92,22,77)(2,93,23,78)(3,94,24,79)(4,95,25,80)(5,96,26,81)(6,97,27,82)(7,98,28,83)(8,99,29,84)(9,100,30,85)(10,101,31,69)(11,102,32,70)(12,86,33,71)(13,87,34,72)(14,88,18,73)(15,89,19,74)(16,90,20,75)(17,91,21,76)(35,122,57,110)(36,123,58,111)(37,124,59,112)(38,125,60,113)(39,126,61,114)(40,127,62,115)(41,128,63,116)(42,129,64,117)(43,130,65,118)(44,131,66,119)(45,132,67,103)(46,133,68,104)(47,134,52,105)(48,135,53,106)(49,136,54,107)(50,120,55,108)(51,121,56,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,25)(19,24)(20,23)(21,22)(26,34)(27,33)(28,32)(29,31)(35,52)(36,68)(37,67)(38,66)(39,65)(40,64)(41,63)(42,62)(43,61)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54)(51,53)(69,115)(70,114)(71,113)(72,112)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,119)(83,118)(84,117)(85,116)(86,125)(87,124)(88,123)(89,122)(90,121)(91,120)(92,136)(93,135)(94,134)(95,133)(96,132)(97,131)(98,130)(99,129)(100,128)(101,127)(102,126)>;

G:=Group( (1,55,22,50)(2,56,23,51)(3,57,24,35)(4,58,25,36)(5,59,26,37)(6,60,27,38)(7,61,28,39)(8,62,29,40)(9,63,30,41)(10,64,31,42)(11,65,32,43)(12,66,33,44)(13,67,34,45)(14,68,18,46)(15,52,19,47)(16,53,20,48)(17,54,21,49)(69,117,101,129)(70,118,102,130)(71,119,86,131)(72,103,87,132)(73,104,88,133)(74,105,89,134)(75,106,90,135)(76,107,91,136)(77,108,92,120)(78,109,93,121)(79,110,94,122)(80,111,95,123)(81,112,96,124)(82,113,97,125)(83,114,98,126)(84,115,99,127)(85,116,100,128), (1,92,22,77)(2,93,23,78)(3,94,24,79)(4,95,25,80)(5,96,26,81)(6,97,27,82)(7,98,28,83)(8,99,29,84)(9,100,30,85)(10,101,31,69)(11,102,32,70)(12,86,33,71)(13,87,34,72)(14,88,18,73)(15,89,19,74)(16,90,20,75)(17,91,21,76)(35,122,57,110)(36,123,58,111)(37,124,59,112)(38,125,60,113)(39,126,61,114)(40,127,62,115)(41,128,63,116)(42,129,64,117)(43,130,65,118)(44,131,66,119)(45,132,67,103)(46,133,68,104)(47,134,52,105)(48,135,53,106)(49,136,54,107)(50,120,55,108)(51,121,56,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,25)(19,24)(20,23)(21,22)(26,34)(27,33)(28,32)(29,31)(35,52)(36,68)(37,67)(38,66)(39,65)(40,64)(41,63)(42,62)(43,61)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54)(51,53)(69,115)(70,114)(71,113)(72,112)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,119)(83,118)(84,117)(85,116)(86,125)(87,124)(88,123)(89,122)(90,121)(91,120)(92,136)(93,135)(94,134)(95,133)(96,132)(97,131)(98,130)(99,129)(100,128)(101,127)(102,126) );

G=PermutationGroup([[(1,55,22,50),(2,56,23,51),(3,57,24,35),(4,58,25,36),(5,59,26,37),(6,60,27,38),(7,61,28,39),(8,62,29,40),(9,63,30,41),(10,64,31,42),(11,65,32,43),(12,66,33,44),(13,67,34,45),(14,68,18,46),(15,52,19,47),(16,53,20,48),(17,54,21,49),(69,117,101,129),(70,118,102,130),(71,119,86,131),(72,103,87,132),(73,104,88,133),(74,105,89,134),(75,106,90,135),(76,107,91,136),(77,108,92,120),(78,109,93,121),(79,110,94,122),(80,111,95,123),(81,112,96,124),(82,113,97,125),(83,114,98,126),(84,115,99,127),(85,116,100,128)], [(1,92,22,77),(2,93,23,78),(3,94,24,79),(4,95,25,80),(5,96,26,81),(6,97,27,82),(7,98,28,83),(8,99,29,84),(9,100,30,85),(10,101,31,69),(11,102,32,70),(12,86,33,71),(13,87,34,72),(14,88,18,73),(15,89,19,74),(16,90,20,75),(17,91,21,76),(35,122,57,110),(36,123,58,111),(37,124,59,112),(38,125,60,113),(39,126,61,114),(40,127,62,115),(41,128,63,116),(42,129,64,117),(43,130,65,118),(44,131,66,119),(45,132,67,103),(46,133,68,104),(47,134,52,105),(48,135,53,106),(49,136,54,107),(50,120,55,108),(51,121,56,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(18,25),(19,24),(20,23),(21,22),(26,34),(27,33),(28,32),(29,31),(35,52),(36,68),(37,67),(38,66),(39,65),(40,64),(41,63),(42,62),(43,61),(44,60),(45,59),(46,58),(47,57),(48,56),(49,55),(50,54),(51,53),(69,115),(70,114),(71,113),(72,112),(73,111),(74,110),(75,109),(76,108),(77,107),(78,106),(79,105),(80,104),(81,103),(82,119),(83,118),(84,117),(85,116),(86,125),(87,124),(88,123),(89,122),(90,121),(91,120),(92,136),(93,135),(94,134),(95,133),(96,132),(97,131),(98,130),(99,129),(100,128),(101,127),(102,126)]])

47 conjugacy classes

class 1 2A2B4A4B8A8B17A···17H34A···34H68A···68X
order122448817···1734···3468···68
size11682434342···22···24···4

47 irreducible representations

dim1111222224
type++++++++
imageC1C2C2C2D4SD16D17D34C17⋊D4Q8⋊D17
kernelQ8⋊D17C173C8D68Q8×C17C34C17Q8C4C2C1
# reps11111288168

Matrix representation of Q8⋊D17 in GL4(𝔽137) generated by

1000
0100
00128
0088136
,
136000
013600
005129
005286
,
0100
1363400
0010
0001
,
0100
1000
0010
0088136
G:=sub<GL(4,GF(137))| [1,0,0,0,0,1,0,0,0,0,1,88,0,0,28,136],[136,0,0,0,0,136,0,0,0,0,51,52,0,0,29,86],[0,136,0,0,1,34,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,88,0,0,0,136] >;

Q8⋊D17 in GAP, Magma, Sage, TeX

Q_8\rtimes D_{17}
% in TeX

G:=Group("Q8:D17");
// GroupNames label

G:=SmallGroup(272,17);
// by ID

G=gap.SmallGroup(272,17);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,61,46,182,97,42,6404]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^17=d^2=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of Q8⋊D17 in TeX

׿
×
𝔽