extension | φ:Q→Aut N | d | ρ | Label | ID |
C33:1(C2xC4) = Dic3xD11 | φ: C2xC4/C2 → C22 ⊆ Aut C33 | 132 | 4- | C33:1(C2xC4) | 264,5 |
C33:2(C2xC4) = S3xDic11 | φ: C2xC4/C2 → C22 ⊆ Aut C33 | 132 | 4- | C33:2(C2xC4) | 264,6 |
C33:3(C2xC4) = D33:C4 | φ: C2xC4/C2 → C22 ⊆ Aut C33 | 132 | 4+ | C33:3(C2xC4) | 264,7 |
C33:4(C2xC4) = C4xD33 | φ: C2xC4/C4 → C2 ⊆ Aut C33 | 132 | 2 | C33:4(C2xC4) | 264,24 |
C33:5(C2xC4) = C12xD11 | φ: C2xC4/C4 → C2 ⊆ Aut C33 | 132 | 2 | C33:5(C2xC4) | 264,14 |
C33:6(C2xC4) = S3xC44 | φ: C2xC4/C4 → C2 ⊆ Aut C33 | 132 | 2 | C33:6(C2xC4) | 264,19 |
C33:7(C2xC4) = C2xDic33 | φ: C2xC4/C22 → C2 ⊆ Aut C33 | 264 | | C33:7(C2xC4) | 264,26 |
C33:8(C2xC4) = C6xDic11 | φ: C2xC4/C22 → C2 ⊆ Aut C33 | 264 | | C33:8(C2xC4) | 264,16 |
C33:9(C2xC4) = Dic3xC22 | φ: C2xC4/C22 → C2 ⊆ Aut C33 | 264 | | C33:9(C2xC4) | 264,21 |