direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C12×D11, C44⋊2C6, D22.C6, C132⋊4C2, C6.14D22, Dic11⋊2C6, C66.14C22, C33⋊5(C2×C4), C11⋊1(C2×C12), C22.2(C2×C6), C2.1(C6×D11), (C6×D11).2C2, (C3×Dic11)⋊5C2, SmallGroup(264,14)
Series: Derived ►Chief ►Lower central ►Upper central
| C11 — C12×D11 |
Generators and relations for C12×D11
G = < a,b,c | a12=b11=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)
(1 76 121 47 60 29 22 118 70 96 97)(2 77 122 48 49 30 23 119 71 85 98)(3 78 123 37 50 31 24 120 72 86 99)(4 79 124 38 51 32 13 109 61 87 100)(5 80 125 39 52 33 14 110 62 88 101)(6 81 126 40 53 34 15 111 63 89 102)(7 82 127 41 54 35 16 112 64 90 103)(8 83 128 42 55 36 17 113 65 91 104)(9 84 129 43 56 25 18 114 66 92 105)(10 73 130 44 57 26 19 115 67 93 106)(11 74 131 45 58 27 20 116 68 94 107)(12 75 132 46 59 28 21 117 69 95 108)
(1 97)(2 98)(3 99)(4 100)(5 101)(6 102)(7 103)(8 104)(9 105)(10 106)(11 107)(12 108)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 49)(24 50)(37 120)(38 109)(39 110)(40 111)(41 112)(42 113)(43 114)(44 115)(45 116)(46 117)(47 118)(48 119)(61 124)(62 125)(63 126)(64 127)(65 128)(66 129)(67 130)(68 131)(69 132)(70 121)(71 122)(72 123)(73 93)(74 94)(75 95)(76 96)(77 85)(78 86)(79 87)(80 88)(81 89)(82 90)(83 91)(84 92)
G:=sub<Sym(132)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132), (1,76,121,47,60,29,22,118,70,96,97)(2,77,122,48,49,30,23,119,71,85,98)(3,78,123,37,50,31,24,120,72,86,99)(4,79,124,38,51,32,13,109,61,87,100)(5,80,125,39,52,33,14,110,62,88,101)(6,81,126,40,53,34,15,111,63,89,102)(7,82,127,41,54,35,16,112,64,90,103)(8,83,128,42,55,36,17,113,65,91,104)(9,84,129,43,56,25,18,114,66,92,105)(10,73,130,44,57,26,19,115,67,93,106)(11,74,131,45,58,27,20,116,68,94,107)(12,75,132,46,59,28,21,117,69,95,108), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,107)(12,108)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,49)(24,50)(37,120)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,121)(71,122)(72,123)(73,93)(74,94)(75,95)(76,96)(77,85)(78,86)(79,87)(80,88)(81,89)(82,90)(83,91)(84,92)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132), (1,76,121,47,60,29,22,118,70,96,97)(2,77,122,48,49,30,23,119,71,85,98)(3,78,123,37,50,31,24,120,72,86,99)(4,79,124,38,51,32,13,109,61,87,100)(5,80,125,39,52,33,14,110,62,88,101)(6,81,126,40,53,34,15,111,63,89,102)(7,82,127,41,54,35,16,112,64,90,103)(8,83,128,42,55,36,17,113,65,91,104)(9,84,129,43,56,25,18,114,66,92,105)(10,73,130,44,57,26,19,115,67,93,106)(11,74,131,45,58,27,20,116,68,94,107)(12,75,132,46,59,28,21,117,69,95,108), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,107)(12,108)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,49)(24,50)(37,120)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,121)(71,122)(72,123)(73,93)(74,94)(75,95)(76,96)(77,85)(78,86)(79,87)(80,88)(81,89)(82,90)(83,91)(84,92) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132)], [(1,76,121,47,60,29,22,118,70,96,97),(2,77,122,48,49,30,23,119,71,85,98),(3,78,123,37,50,31,24,120,72,86,99),(4,79,124,38,51,32,13,109,61,87,100),(5,80,125,39,52,33,14,110,62,88,101),(6,81,126,40,53,34,15,111,63,89,102),(7,82,127,41,54,35,16,112,64,90,103),(8,83,128,42,55,36,17,113,65,91,104),(9,84,129,43,56,25,18,114,66,92,105),(10,73,130,44,57,26,19,115,67,93,106),(11,74,131,45,58,27,20,116,68,94,107),(12,75,132,46,59,28,21,117,69,95,108)], [(1,97),(2,98),(3,99),(4,100),(5,101),(6,102),(7,103),(8,104),(9,105),(10,106),(11,107),(12,108),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,49),(24,50),(37,120),(38,109),(39,110),(40,111),(41,112),(42,113),(43,114),(44,115),(45,116),(46,117),(47,118),(48,119),(61,124),(62,125),(63,126),(64,127),(65,128),(66,129),(67,130),(68,131),(69,132),(70,121),(71,122),(72,123),(73,93),(74,94),(75,95),(76,96),(77,85),(78,86),(79,87),(80,88),(81,89),(82,90),(83,91),(84,92)]])
84 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 11A | ··· | 11E | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 22A | ··· | 22E | 33A | ··· | 33J | 44A | ··· | 44J | 66A | ··· | 66J | 132A | ··· | 132T |
| order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 11 | ··· | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 22 | ··· | 22 | 33 | ··· | 33 | 44 | ··· | 44 | 66 | ··· | 66 | 132 | ··· | 132 |
| size | 1 | 1 | 11 | 11 | 1 | 1 | 1 | 1 | 11 | 11 | 1 | 1 | 11 | 11 | 11 | 11 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 11 | 11 | 11 | 11 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
84 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | ||||||||||
| image | C1 | C2 | C2 | C2 | C3 | C4 | C6 | C6 | C6 | C12 | D11 | D22 | C3×D11 | C4×D11 | C6×D11 | C12×D11 |
| kernel | C12×D11 | C3×Dic11 | C132 | C6×D11 | C4×D11 | C3×D11 | Dic11 | C44 | D22 | D11 | C12 | C6 | C4 | C3 | C2 | C1 |
| # reps | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 8 | 5 | 5 | 10 | 10 | 10 | 20 |
Matrix representation of C12×D11 ►in GL3(𝔽397) generated by
| 334 | 0 | 0 |
| 0 | 362 | 0 |
| 0 | 0 | 362 |
| 1 | 0 | 0 |
| 0 | 396 | 97 |
| 0 | 396 | 96 |
| 396 | 0 | 0 |
| 0 | 104 | 293 |
| 0 | 62 | 293 |
G:=sub<GL(3,GF(397))| [334,0,0,0,362,0,0,0,362],[1,0,0,0,396,396,0,97,96],[396,0,0,0,104,62,0,293,293] >;
C12×D11 in GAP, Magma, Sage, TeX
C_{12}\times D_{11} % in TeX
G:=Group("C12xD11"); // GroupNames label
G:=SmallGroup(264,14);
// by ID
G=gap.SmallGroup(264,14);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-11,66,6004]);
// Polycyclic
G:=Group<a,b,c|a^12=b^11=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export