Copied to
clipboard

G = C12×D11order 264 = 23·3·11

Direct product of C12 and D11

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C12×D11, C442C6, D22.C6, C1324C2, C6.14D22, Dic112C6, C66.14C22, C335(C2×C4), C111(C2×C12), C22.2(C2×C6), C2.1(C6×D11), (C6×D11).2C2, (C3×Dic11)⋊5C2, SmallGroup(264,14)

Series: Derived Chief Lower central Upper central

C1C11 — C12×D11
C1C11C22C66C6×D11 — C12×D11
C11 — C12×D11
C1C12

Generators and relations for C12×D11
 G = < a,b,c | a12=b11=c2=1, ab=ba, ac=ca, cbc=b-1 >

11C2
11C2
11C4
11C22
11C6
11C6
11C2×C4
11C12
11C2×C6
11C2×C12

Smallest permutation representation of C12×D11
On 132 points
Generators in S132
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)
(1 76 121 47 60 29 22 118 70 96 97)(2 77 122 48 49 30 23 119 71 85 98)(3 78 123 37 50 31 24 120 72 86 99)(4 79 124 38 51 32 13 109 61 87 100)(5 80 125 39 52 33 14 110 62 88 101)(6 81 126 40 53 34 15 111 63 89 102)(7 82 127 41 54 35 16 112 64 90 103)(8 83 128 42 55 36 17 113 65 91 104)(9 84 129 43 56 25 18 114 66 92 105)(10 73 130 44 57 26 19 115 67 93 106)(11 74 131 45 58 27 20 116 68 94 107)(12 75 132 46 59 28 21 117 69 95 108)
(1 97)(2 98)(3 99)(4 100)(5 101)(6 102)(7 103)(8 104)(9 105)(10 106)(11 107)(12 108)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 49)(24 50)(37 120)(38 109)(39 110)(40 111)(41 112)(42 113)(43 114)(44 115)(45 116)(46 117)(47 118)(48 119)(61 124)(62 125)(63 126)(64 127)(65 128)(66 129)(67 130)(68 131)(69 132)(70 121)(71 122)(72 123)(73 93)(74 94)(75 95)(76 96)(77 85)(78 86)(79 87)(80 88)(81 89)(82 90)(83 91)(84 92)

G:=sub<Sym(132)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132), (1,76,121,47,60,29,22,118,70,96,97)(2,77,122,48,49,30,23,119,71,85,98)(3,78,123,37,50,31,24,120,72,86,99)(4,79,124,38,51,32,13,109,61,87,100)(5,80,125,39,52,33,14,110,62,88,101)(6,81,126,40,53,34,15,111,63,89,102)(7,82,127,41,54,35,16,112,64,90,103)(8,83,128,42,55,36,17,113,65,91,104)(9,84,129,43,56,25,18,114,66,92,105)(10,73,130,44,57,26,19,115,67,93,106)(11,74,131,45,58,27,20,116,68,94,107)(12,75,132,46,59,28,21,117,69,95,108), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,107)(12,108)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,49)(24,50)(37,120)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,121)(71,122)(72,123)(73,93)(74,94)(75,95)(76,96)(77,85)(78,86)(79,87)(80,88)(81,89)(82,90)(83,91)(84,92)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132), (1,76,121,47,60,29,22,118,70,96,97)(2,77,122,48,49,30,23,119,71,85,98)(3,78,123,37,50,31,24,120,72,86,99)(4,79,124,38,51,32,13,109,61,87,100)(5,80,125,39,52,33,14,110,62,88,101)(6,81,126,40,53,34,15,111,63,89,102)(7,82,127,41,54,35,16,112,64,90,103)(8,83,128,42,55,36,17,113,65,91,104)(9,84,129,43,56,25,18,114,66,92,105)(10,73,130,44,57,26,19,115,67,93,106)(11,74,131,45,58,27,20,116,68,94,107)(12,75,132,46,59,28,21,117,69,95,108), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,107)(12,108)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,49)(24,50)(37,120)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,121)(71,122)(72,123)(73,93)(74,94)(75,95)(76,96)(77,85)(78,86)(79,87)(80,88)(81,89)(82,90)(83,91)(84,92) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132)], [(1,76,121,47,60,29,22,118,70,96,97),(2,77,122,48,49,30,23,119,71,85,98),(3,78,123,37,50,31,24,120,72,86,99),(4,79,124,38,51,32,13,109,61,87,100),(5,80,125,39,52,33,14,110,62,88,101),(6,81,126,40,53,34,15,111,63,89,102),(7,82,127,41,54,35,16,112,64,90,103),(8,83,128,42,55,36,17,113,65,91,104),(9,84,129,43,56,25,18,114,66,92,105),(10,73,130,44,57,26,19,115,67,93,106),(11,74,131,45,58,27,20,116,68,94,107),(12,75,132,46,59,28,21,117,69,95,108)], [(1,97),(2,98),(3,99),(4,100),(5,101),(6,102),(7,103),(8,104),(9,105),(10,106),(11,107),(12,108),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,49),(24,50),(37,120),(38,109),(39,110),(40,111),(41,112),(42,113),(43,114),(44,115),(45,116),(46,117),(47,118),(48,119),(61,124),(62,125),(63,126),(64,127),(65,128),(66,129),(67,130),(68,131),(69,132),(70,121),(71,122),(72,123),(73,93),(74,94),(75,95),(76,96),(77,85),(78,86),(79,87),(80,88),(81,89),(82,90),(83,91),(84,92)]])

84 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A6B6C6D6E6F11A···11E12A12B12C12D12E12F12G12H22A···22E33A···33J44A···44J66A···66J132A···132T
order122233444466666611···11121212121212121222···2233···3344···4466···66132···132
size1111111111111111111111112···21111111111112···22···22···22···22···2

84 irreducible representations

dim1111111111222222
type++++++
imageC1C2C2C2C3C4C6C6C6C12D11D22C3×D11C4×D11C6×D11C12×D11
kernelC12×D11C3×Dic11C132C6×D11C4×D11C3×D11Dic11C44D22D11C12C6C4C3C2C1
# reps11112422285510101020

Matrix representation of C12×D11 in GL3(𝔽397) generated by

33400
03620
00362
,
100
039697
039696
,
39600
0104293
062293
G:=sub<GL(3,GF(397))| [334,0,0,0,362,0,0,0,362],[1,0,0,0,396,396,0,97,96],[396,0,0,0,104,62,0,293,293] >;

C12×D11 in GAP, Magma, Sage, TeX

C_{12}\times D_{11}
% in TeX

G:=Group("C12xD11");
// GroupNames label

G:=SmallGroup(264,14);
// by ID

G=gap.SmallGroup(264,14);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-11,66,6004]);
// Polycyclic

G:=Group<a,b,c|a^12=b^11=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C12×D11 in TeX

׿
×
𝔽