direct product, cyclic, abelian, monomial
Aliases: C33, also denoted Z33, SmallGroup(33,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C33 |
C1 — C33 |
C1 — C33 |
Generators and relations for C33
G = < a | a33=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)
G:=sub<Sym(33)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)]])
C33 is a maximal subgroup of
D33
33 conjugacy classes
class | 1 | 3A | 3B | 11A | ··· | 11J | 33A | ··· | 33T |
order | 1 | 3 | 3 | 11 | ··· | 11 | 33 | ··· | 33 |
size | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | |||
image | C1 | C3 | C11 | C33 |
kernel | C33 | C11 | C3 | C1 |
# reps | 1 | 2 | 10 | 20 |
Matrix representation of C33 ►in GL1(𝔽67) generated by
65 |
G:=sub<GL(1,GF(67))| [65] >;
C33 in GAP, Magma, Sage, TeX
C_{33}
% in TeX
G:=Group("C33");
// GroupNames label
G:=SmallGroup(33,1);
// by ID
G=gap.SmallGroup(33,1);
# by ID
G:=PCGroup([2,-3,-11]);
// Polycyclic
G:=Group<a|a^33=1>;
// generators/relations
Export