Extensions 1→N→G→Q→1 with N=C2×Dic17 and Q=C2

Direct product G=N×Q with N=C2×Dic17 and Q=C2
dρLabelID
C22×Dic17272C2^2xDic17272,44

Semidirect products G=N:Q with N=C2×Dic17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic17)⋊1C2 = D34⋊C4φ: C2/C1C2 ⊆ Out C2×Dic17136(C2xDic17):1C2272,14
(C2×Dic17)⋊2C2 = C23.D17φ: C2/C1C2 ⊆ Out C2×Dic17136(C2xDic17):2C2272,19
(C2×Dic17)⋊3C2 = D42D17φ: C2/C1C2 ⊆ Out C2×Dic171364-(C2xDic17):3C2272,41
(C2×Dic17)⋊4C2 = C2×C17⋊D4φ: C2/C1C2 ⊆ Out C2×Dic17136(C2xDic17):4C2272,45
(C2×Dic17)⋊5C2 = C2×C4×D17φ: trivial image136(C2xDic17):5C2272,37

Non-split extensions G=N.Q with N=C2×Dic17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic17).1C2 = C34.D4φ: C2/C1C2 ⊆ Out C2×Dic17272(C2xDic17).1C2272,12
(C2×Dic17).2C2 = C683C4φ: C2/C1C2 ⊆ Out C2×Dic17272(C2xDic17).2C2272,13
(C2×Dic17).3C2 = C2×Dic34φ: C2/C1C2 ⊆ Out C2×Dic17272(C2xDic17).3C2272,36
(C2×Dic17).4C2 = C2×C172C8φ: C2/C1C2 ⊆ Out C2×Dic17272(C2xDic17).4C2272,33
(C2×Dic17).5C2 = C17⋊M4(2)φ: C2/C1C2 ⊆ Out C2×Dic171364-(C2xDic17).5C2272,34
(C2×Dic17).6C2 = C4×Dic17φ: trivial image272(C2xDic17).6C2272,11

׿
×
𝔽