Copied to
clipboard

G = C2×C4×D17order 272 = 24·17

Direct product of C2×C4 and D17

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C4×D17, C683C22, C34.2C23, C22.9D34, D34.8C22, Dic173C22, C342(C2×C4), (C2×C68)⋊5C2, C172(C22×C4), (C2×Dic17)⋊5C2, (C2×C34).9C22, C2.1(C22×D17), (C22×D17).4C2, SmallGroup(272,37)

Series: Derived Chief Lower central Upper central

C1C17 — C2×C4×D17
C1C17C34D34C22×D17 — C2×C4×D17
C17 — C2×C4×D17
C1C2×C4

Generators and relations for C2×C4×D17
 G = < a,b,c,d | a2=b4=c17=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 358 in 54 conjugacy classes, 35 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C22×C4, C17, D17, C34, C34, Dic17, C68, D34, C2×C34, C4×D17, C2×Dic17, C2×C68, C22×D17, C2×C4×D17
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, D17, D34, C4×D17, C22×D17, C2×C4×D17

Smallest permutation representation of C2×C4×D17
On 136 points
Generators in S136
(1 85)(2 69)(3 70)(4 71)(5 72)(6 73)(7 74)(8 75)(9 76)(10 77)(11 78)(12 79)(13 80)(14 81)(15 82)(16 83)(17 84)(18 94)(19 95)(20 96)(21 97)(22 98)(23 99)(24 100)(25 101)(26 102)(27 86)(28 87)(29 88)(30 89)(31 90)(32 91)(33 92)(34 93)(35 109)(36 110)(37 111)(38 112)(39 113)(40 114)(41 115)(42 116)(43 117)(44 118)(45 119)(46 103)(47 104)(48 105)(49 106)(50 107)(51 108)(52 132)(53 133)(54 134)(55 135)(56 136)(57 120)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 127)(65 128)(66 129)(67 130)(68 131)
(1 58 27 42)(2 59 28 43)(3 60 29 44)(4 61 30 45)(5 62 31 46)(6 63 32 47)(7 64 33 48)(8 65 34 49)(9 66 18 50)(10 67 19 51)(11 68 20 35)(12 52 21 36)(13 53 22 37)(14 54 23 38)(15 55 24 39)(16 56 25 40)(17 57 26 41)(69 122 87 117)(70 123 88 118)(71 124 89 119)(72 125 90 103)(73 126 91 104)(74 127 92 105)(75 128 93 106)(76 129 94 107)(77 130 95 108)(78 131 96 109)(79 132 97 110)(80 133 98 111)(81 134 99 112)(82 135 100 113)(83 136 101 114)(84 120 102 115)(85 121 86 116)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)(25 28)(26 27)(35 48)(36 47)(37 46)(38 45)(39 44)(40 43)(41 42)(49 51)(52 63)(53 62)(54 61)(55 60)(56 59)(57 58)(64 68)(65 67)(69 83)(70 82)(71 81)(72 80)(73 79)(74 78)(75 77)(84 85)(86 102)(87 101)(88 100)(89 99)(90 98)(91 97)(92 96)(93 95)(103 111)(104 110)(105 109)(106 108)(112 119)(113 118)(114 117)(115 116)(120 121)(122 136)(123 135)(124 134)(125 133)(126 132)(127 131)(128 130)

G:=sub<Sym(136)| (1,85)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,94)(19,95)(20,96)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,109)(36,110)(37,111)(38,112)(39,113)(40,114)(41,115)(42,116)(43,117)(44,118)(45,119)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,132)(53,133)(54,134)(55,135)(56,136)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131), (1,58,27,42)(2,59,28,43)(3,60,29,44)(4,61,30,45)(5,62,31,46)(6,63,32,47)(7,64,33,48)(8,65,34,49)(9,66,18,50)(10,67,19,51)(11,68,20,35)(12,52,21,36)(13,53,22,37)(14,54,23,38)(15,55,24,39)(16,56,25,40)(17,57,26,41)(69,122,87,117)(70,123,88,118)(71,124,89,119)(72,125,90,103)(73,126,91,104)(74,127,92,105)(75,128,93,106)(76,129,94,107)(77,130,95,108)(78,131,96,109)(79,132,97,110)(80,133,98,111)(81,134,99,112)(82,135,100,113)(83,136,101,114)(84,120,102,115)(85,121,86,116), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(35,48)(36,47)(37,46)(38,45)(39,44)(40,43)(41,42)(49,51)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58)(64,68)(65,67)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77)(84,85)(86,102)(87,101)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(103,111)(104,110)(105,109)(106,108)(112,119)(113,118)(114,117)(115,116)(120,121)(122,136)(123,135)(124,134)(125,133)(126,132)(127,131)(128,130)>;

G:=Group( (1,85)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,94)(19,95)(20,96)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,109)(36,110)(37,111)(38,112)(39,113)(40,114)(41,115)(42,116)(43,117)(44,118)(45,119)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,132)(53,133)(54,134)(55,135)(56,136)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131), (1,58,27,42)(2,59,28,43)(3,60,29,44)(4,61,30,45)(5,62,31,46)(6,63,32,47)(7,64,33,48)(8,65,34,49)(9,66,18,50)(10,67,19,51)(11,68,20,35)(12,52,21,36)(13,53,22,37)(14,54,23,38)(15,55,24,39)(16,56,25,40)(17,57,26,41)(69,122,87,117)(70,123,88,118)(71,124,89,119)(72,125,90,103)(73,126,91,104)(74,127,92,105)(75,128,93,106)(76,129,94,107)(77,130,95,108)(78,131,96,109)(79,132,97,110)(80,133,98,111)(81,134,99,112)(82,135,100,113)(83,136,101,114)(84,120,102,115)(85,121,86,116), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(35,48)(36,47)(37,46)(38,45)(39,44)(40,43)(41,42)(49,51)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58)(64,68)(65,67)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77)(84,85)(86,102)(87,101)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(103,111)(104,110)(105,109)(106,108)(112,119)(113,118)(114,117)(115,116)(120,121)(122,136)(123,135)(124,134)(125,133)(126,132)(127,131)(128,130) );

G=PermutationGroup([[(1,85),(2,69),(3,70),(4,71),(5,72),(6,73),(7,74),(8,75),(9,76),(10,77),(11,78),(12,79),(13,80),(14,81),(15,82),(16,83),(17,84),(18,94),(19,95),(20,96),(21,97),(22,98),(23,99),(24,100),(25,101),(26,102),(27,86),(28,87),(29,88),(30,89),(31,90),(32,91),(33,92),(34,93),(35,109),(36,110),(37,111),(38,112),(39,113),(40,114),(41,115),(42,116),(43,117),(44,118),(45,119),(46,103),(47,104),(48,105),(49,106),(50,107),(51,108),(52,132),(53,133),(54,134),(55,135),(56,136),(57,120),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,127),(65,128),(66,129),(67,130),(68,131)], [(1,58,27,42),(2,59,28,43),(3,60,29,44),(4,61,30,45),(5,62,31,46),(6,63,32,47),(7,64,33,48),(8,65,34,49),(9,66,18,50),(10,67,19,51),(11,68,20,35),(12,52,21,36),(13,53,22,37),(14,54,23,38),(15,55,24,39),(16,56,25,40),(17,57,26,41),(69,122,87,117),(70,123,88,118),(71,124,89,119),(72,125,90,103),(73,126,91,104),(74,127,92,105),(75,128,93,106),(76,129,94,107),(77,130,95,108),(78,131,96,109),(79,132,97,110),(80,133,98,111),(81,134,99,112),(82,135,100,113),(83,136,101,114),(84,120,102,115),(85,121,86,116)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29),(25,28),(26,27),(35,48),(36,47),(37,46),(38,45),(39,44),(40,43),(41,42),(49,51),(52,63),(53,62),(54,61),(55,60),(56,59),(57,58),(64,68),(65,67),(69,83),(70,82),(71,81),(72,80),(73,79),(74,78),(75,77),(84,85),(86,102),(87,101),(88,100),(89,99),(90,98),(91,97),(92,96),(93,95),(103,111),(104,110),(105,109),(106,108),(112,119),(113,118),(114,117),(115,116),(120,121),(122,136),(123,135),(124,134),(125,133),(126,132),(127,131),(128,130)]])

80 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H17A···17H34A···34X68A···68AF
order122222224444444417···1734···3468···68
size1111171717171111171717172···22···22···2

80 irreducible representations

dim1111112222
type++++++++
imageC1C2C2C2C2C4D17D34D34C4×D17
kernelC2×C4×D17C4×D17C2×Dic17C2×C68C22×D17D34C2×C4C4C22C2
# reps141118816832

Matrix representation of C2×C4×D17 in GL3(𝔽137) generated by

13600
010
001
,
100
0370
0037
,
100
011640
013641
,
13600
02384
072114
G:=sub<GL(3,GF(137))| [136,0,0,0,1,0,0,0,1],[1,0,0,0,37,0,0,0,37],[1,0,0,0,116,136,0,40,41],[136,0,0,0,23,72,0,84,114] >;

C2×C4×D17 in GAP, Magma, Sage, TeX

C_2\times C_4\times D_{17}
% in TeX

G:=Group("C2xC4xD17");
// GroupNames label

G:=SmallGroup(272,37);
// by ID

G=gap.SmallGroup(272,37);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,42,6404]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^17=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽