Copied to
clipboard

G = C2×Dic17order 136 = 23·17

Direct product of C2 and Dic17

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×Dic17, C342C4, C2.2D34, C22.D17, C34.4C22, C173(C2×C4), (C2×C34).C2, SmallGroup(136,7)

Series: Derived Chief Lower central Upper central

C1C17 — C2×Dic17
C1C17C34Dic17 — C2×Dic17
C17 — C2×Dic17
C1C22

Generators and relations for C2×Dic17
 G = < a,b,c | a2=b34=1, c2=b17, ab=ba, ac=ca, cbc-1=b-1 >

17C4
17C4
17C2×C4

Smallest permutation representation of C2×Dic17
Regular action on 136 points
Generators in S136
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(69 120)(70 121)(71 122)(72 123)(73 124)(74 125)(75 126)(76 127)(77 128)(78 129)(79 130)(80 131)(81 132)(82 133)(83 134)(84 135)(85 136)(86 103)(87 104)(88 105)(89 106)(90 107)(91 108)(92 109)(93 110)(94 111)(95 112)(96 113)(97 114)(98 115)(99 116)(100 117)(101 118)(102 119)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 86 18 69)(2 85 19 102)(3 84 20 101)(4 83 21 100)(5 82 22 99)(6 81 23 98)(7 80 24 97)(8 79 25 96)(9 78 26 95)(10 77 27 94)(11 76 28 93)(12 75 29 92)(13 74 30 91)(14 73 31 90)(15 72 32 89)(16 71 33 88)(17 70 34 87)(35 131 52 114)(36 130 53 113)(37 129 54 112)(38 128 55 111)(39 127 56 110)(40 126 57 109)(41 125 58 108)(42 124 59 107)(43 123 60 106)(44 122 61 105)(45 121 62 104)(46 120 63 103)(47 119 64 136)(48 118 65 135)(49 117 66 134)(50 116 67 133)(51 115 68 132)

G:=sub<Sym(136)| (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(69,120)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135)(85,136)(86,103)(87,104)(88,105)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,113)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,86,18,69)(2,85,19,102)(3,84,20,101)(4,83,21,100)(5,82,22,99)(6,81,23,98)(7,80,24,97)(8,79,25,96)(9,78,26,95)(10,77,27,94)(11,76,28,93)(12,75,29,92)(13,74,30,91)(14,73,31,90)(15,72,32,89)(16,71,33,88)(17,70,34,87)(35,131,52,114)(36,130,53,113)(37,129,54,112)(38,128,55,111)(39,127,56,110)(40,126,57,109)(41,125,58,108)(42,124,59,107)(43,123,60,106)(44,122,61,105)(45,121,62,104)(46,120,63,103)(47,119,64,136)(48,118,65,135)(49,117,66,134)(50,116,67,133)(51,115,68,132)>;

G:=Group( (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(69,120)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135)(85,136)(86,103)(87,104)(88,105)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,113)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,86,18,69)(2,85,19,102)(3,84,20,101)(4,83,21,100)(5,82,22,99)(6,81,23,98)(7,80,24,97)(8,79,25,96)(9,78,26,95)(10,77,27,94)(11,76,28,93)(12,75,29,92)(13,74,30,91)(14,73,31,90)(15,72,32,89)(16,71,33,88)(17,70,34,87)(35,131,52,114)(36,130,53,113)(37,129,54,112)(38,128,55,111)(39,127,56,110)(40,126,57,109)(41,125,58,108)(42,124,59,107)(43,123,60,106)(44,122,61,105)(45,121,62,104)(46,120,63,103)(47,119,64,136)(48,118,65,135)(49,117,66,134)(50,116,67,133)(51,115,68,132) );

G=PermutationGroup([[(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(69,120),(70,121),(71,122),(72,123),(73,124),(74,125),(75,126),(76,127),(77,128),(78,129),(79,130),(80,131),(81,132),(82,133),(83,134),(84,135),(85,136),(86,103),(87,104),(88,105),(89,106),(90,107),(91,108),(92,109),(93,110),(94,111),(95,112),(96,113),(97,114),(98,115),(99,116),(100,117),(101,118),(102,119)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,86,18,69),(2,85,19,102),(3,84,20,101),(4,83,21,100),(5,82,22,99),(6,81,23,98),(7,80,24,97),(8,79,25,96),(9,78,26,95),(10,77,27,94),(11,76,28,93),(12,75,29,92),(13,74,30,91),(14,73,31,90),(15,72,32,89),(16,71,33,88),(17,70,34,87),(35,131,52,114),(36,130,53,113),(37,129,54,112),(38,128,55,111),(39,127,56,110),(40,126,57,109),(41,125,58,108),(42,124,59,107),(43,123,60,106),(44,122,61,105),(45,121,62,104),(46,120,63,103),(47,119,64,136),(48,118,65,135),(49,117,66,134),(50,116,67,133),(51,115,68,132)]])

C2×Dic17 is a maximal subgroup of   C34.D4  C683C4  D34⋊C4  C23.D17  C17⋊M4(2)  C2×C4×D17  D42D17
C2×Dic17 is a maximal quotient of   C68.4C4  C683C4  C23.D17

40 conjugacy classes

class 1 2A2B2C4A4B4C4D17A···17H34A···34X
order1222444417···1734···34
size1111171717172···22···2

40 irreducible representations

dim1111222
type++++-+
imageC1C2C2C4D17Dic17D34
kernelC2×Dic17Dic17C2×C34C34C22C2C2
# reps12148168

Matrix representation of C2×Dic17 in GL3(𝔽137) generated by

100
01360
00136
,
13600
01136
012612
,
3700
01967
013118
G:=sub<GL(3,GF(137))| [1,0,0,0,136,0,0,0,136],[136,0,0,0,1,126,0,136,12],[37,0,0,0,19,13,0,67,118] >;

C2×Dic17 in GAP, Magma, Sage, TeX

C_2\times {\rm Dic}_{17}
% in TeX

G:=Group("C2xDic17");
// GroupNames label

G:=SmallGroup(136,7);
// by ID

G=gap.SmallGroup(136,7);
# by ID

G:=PCGroup([4,-2,-2,-2,-17,16,2051]);
// Polycyclic

G:=Group<a,b,c|a^2=b^34=1,c^2=b^17,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C2×Dic17 in TeX

׿
×
𝔽