direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×Dic17, C34⋊2C4, C2.2D34, C22.D17, C34.4C22, C17⋊3(C2×C4), (C2×C34).C2, SmallGroup(136,7)
Series: Derived ►Chief ►Lower central ►Upper central
C17 — C2×Dic17 |
Generators and relations for C2×Dic17
G = < a,b,c | a2=b34=1, c2=b17, ab=ba, ac=ca, cbc-1=b-1 >
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(69 120)(70 121)(71 122)(72 123)(73 124)(74 125)(75 126)(76 127)(77 128)(78 129)(79 130)(80 131)(81 132)(82 133)(83 134)(84 135)(85 136)(86 103)(87 104)(88 105)(89 106)(90 107)(91 108)(92 109)(93 110)(94 111)(95 112)(96 113)(97 114)(98 115)(99 116)(100 117)(101 118)(102 119)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 86 18 69)(2 85 19 102)(3 84 20 101)(4 83 21 100)(5 82 22 99)(6 81 23 98)(7 80 24 97)(8 79 25 96)(9 78 26 95)(10 77 27 94)(11 76 28 93)(12 75 29 92)(13 74 30 91)(14 73 31 90)(15 72 32 89)(16 71 33 88)(17 70 34 87)(35 131 52 114)(36 130 53 113)(37 129 54 112)(38 128 55 111)(39 127 56 110)(40 126 57 109)(41 125 58 108)(42 124 59 107)(43 123 60 106)(44 122 61 105)(45 121 62 104)(46 120 63 103)(47 119 64 136)(48 118 65 135)(49 117 66 134)(50 116 67 133)(51 115 68 132)
G:=sub<Sym(136)| (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(69,120)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135)(85,136)(86,103)(87,104)(88,105)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,113)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,86,18,69)(2,85,19,102)(3,84,20,101)(4,83,21,100)(5,82,22,99)(6,81,23,98)(7,80,24,97)(8,79,25,96)(9,78,26,95)(10,77,27,94)(11,76,28,93)(12,75,29,92)(13,74,30,91)(14,73,31,90)(15,72,32,89)(16,71,33,88)(17,70,34,87)(35,131,52,114)(36,130,53,113)(37,129,54,112)(38,128,55,111)(39,127,56,110)(40,126,57,109)(41,125,58,108)(42,124,59,107)(43,123,60,106)(44,122,61,105)(45,121,62,104)(46,120,63,103)(47,119,64,136)(48,118,65,135)(49,117,66,134)(50,116,67,133)(51,115,68,132)>;
G:=Group( (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(69,120)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135)(85,136)(86,103)(87,104)(88,105)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,113)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,86,18,69)(2,85,19,102)(3,84,20,101)(4,83,21,100)(5,82,22,99)(6,81,23,98)(7,80,24,97)(8,79,25,96)(9,78,26,95)(10,77,27,94)(11,76,28,93)(12,75,29,92)(13,74,30,91)(14,73,31,90)(15,72,32,89)(16,71,33,88)(17,70,34,87)(35,131,52,114)(36,130,53,113)(37,129,54,112)(38,128,55,111)(39,127,56,110)(40,126,57,109)(41,125,58,108)(42,124,59,107)(43,123,60,106)(44,122,61,105)(45,121,62,104)(46,120,63,103)(47,119,64,136)(48,118,65,135)(49,117,66,134)(50,116,67,133)(51,115,68,132) );
G=PermutationGroup([[(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(69,120),(70,121),(71,122),(72,123),(73,124),(74,125),(75,126),(76,127),(77,128),(78,129),(79,130),(80,131),(81,132),(82,133),(83,134),(84,135),(85,136),(86,103),(87,104),(88,105),(89,106),(90,107),(91,108),(92,109),(93,110),(94,111),(95,112),(96,113),(97,114),(98,115),(99,116),(100,117),(101,118),(102,119)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,86,18,69),(2,85,19,102),(3,84,20,101),(4,83,21,100),(5,82,22,99),(6,81,23,98),(7,80,24,97),(8,79,25,96),(9,78,26,95),(10,77,27,94),(11,76,28,93),(12,75,29,92),(13,74,30,91),(14,73,31,90),(15,72,32,89),(16,71,33,88),(17,70,34,87),(35,131,52,114),(36,130,53,113),(37,129,54,112),(38,128,55,111),(39,127,56,110),(40,126,57,109),(41,125,58,108),(42,124,59,107),(43,123,60,106),(44,122,61,105),(45,121,62,104),(46,120,63,103),(47,119,64,136),(48,118,65,135),(49,117,66,134),(50,116,67,133),(51,115,68,132)]])
C2×Dic17 is a maximal subgroup of
C34.D4 C68⋊3C4 D34⋊C4 C23.D17 C17⋊M4(2) C2×C4×D17 D4⋊2D17
C2×Dic17 is a maximal quotient of C68.4C4 C68⋊3C4 C23.D17
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 17A | ··· | 17H | 34A | ··· | 34X |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 17 | ··· | 17 | 34 | ··· | 34 |
size | 1 | 1 | 1 | 1 | 17 | 17 | 17 | 17 | 2 | ··· | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | - | + | |
image | C1 | C2 | C2 | C4 | D17 | Dic17 | D34 |
kernel | C2×Dic17 | Dic17 | C2×C34 | C34 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 4 | 8 | 16 | 8 |
Matrix representation of C2×Dic17 ►in GL3(𝔽137) generated by
1 | 0 | 0 |
0 | 136 | 0 |
0 | 0 | 136 |
136 | 0 | 0 |
0 | 1 | 136 |
0 | 126 | 12 |
37 | 0 | 0 |
0 | 19 | 67 |
0 | 13 | 118 |
G:=sub<GL(3,GF(137))| [1,0,0,0,136,0,0,0,136],[136,0,0,0,1,126,0,136,12],[37,0,0,0,19,13,0,67,118] >;
C2×Dic17 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_{17}
% in TeX
G:=Group("C2xDic17");
// GroupNames label
G:=SmallGroup(136,7);
// by ID
G=gap.SmallGroup(136,7);
# by ID
G:=PCGroup([4,-2,-2,-2,-17,16,2051]);
// Polycyclic
G:=Group<a,b,c|a^2=b^34=1,c^2=b^17,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export