Copied to
clipboard

G = C17⋊M4(2)  order 272 = 24·17

The semidirect product of C17 and M4(2) acting via M4(2)/C22=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C172M4(2), Dic17.4C4, Dic17.7C22, C172C82C2, C34.6(C2×C4), (C2×C34).2C4, C22.(C17⋊C4), (C2×Dic17).5C2, C2.6(C2×C17⋊C4), SmallGroup(272,34)

Series: Derived Chief Lower central Upper central

C1C34 — C17⋊M4(2)
C1C17C34Dic17C172C8 — C17⋊M4(2)
C17C34 — C17⋊M4(2)
C1C2C22

Generators and relations for C17⋊M4(2)
 G = < a,b,c | a17=b8=c2=1, bab-1=a4, ac=ca, cbc=b5 >

2C2
17C4
17C4
2C34
17C8
17C2×C4
17C8
17M4(2)

Character table of C17⋊M4(2)

 class 12A2B4A4B4C8A8B8C8D17A17B17C17D34A34B34C34D34E34F34G34H34I34J34K34L
 size 112171734343434344444444444444444
ρ111111111111111111111111111    trivial
ρ211-111-1-11-1111111-1-1-1-1-1-1-1111-1    linear of order 2
ρ311-111-11-11-111111-1-1-1-1-1-1-1111-1    linear of order 2
ρ4111111-1-1-1-11111111111111111    linear of order 2
ρ5111-1-1-1ii-i-i1111111111111111    linear of order 4
ρ611-1-1-11-iii-i11111-1-1-1-1-1-1-1111-1    linear of order 4
ρ711-1-1-11i-i-ii11111-1-1-1-1-1-1-1111-1    linear of order 4
ρ8111-1-1-1-i-iii1111111111111111    linear of order 4
ρ92-202i-2i000002222-20000000-2-2-20    complex lifted from M4(2)
ρ102-20-2i2i000002222-20000000-2-2-20    complex lifted from M4(2)
ρ114440000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417ζ17111710177176ζ17141712175173ζ1716171317417ζ17141712175173ζ17111710177176ζ17111710177176ζ1715179178172ζ1716171317417ζ1716171317417ζ1715179178172ζ17141712175173ζ1715179178172    orthogonal lifted from C17⋊C4
ρ1244-40000000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173ζ17161713174171715179178172171417121751731715179178172171617131741717161713174171711171017717617141712175173ζ17141712175173ζ17111710177176ζ171517917817217111710177176    orthogonal lifted from C2×C17⋊C4
ρ134440000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176ζ1715179178172ζ1716171317417ζ17111710177176ζ1716171317417ζ1715179178172ζ1715179178172ζ17141712175173ζ17111710177176ζ17111710177176ζ17141712175173ζ1716171317417ζ17141712175173    orthogonal lifted from C17⋊C4
ρ1444-40000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176ζ17151791781721716171317417171117101771761716171317417171517917817217151791781721714171217517317111710177176ζ17111710177176ζ17141712175173ζ171617131741717141712175173    orthogonal lifted from C2×C17⋊C4
ρ154440000000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173ζ1716171317417ζ1715179178172ζ17141712175173ζ1715179178172ζ1716171317417ζ1716171317417ζ17111710177176ζ17141712175173ζ17141712175173ζ17111710177176ζ1715179178172ζ17111710177176    orthogonal lifted from C17⋊C4
ρ1644-40000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417ζ1711171017717617141712175173171617131741717141712175173171117101771761711171017717617151791781721716171317417ζ1716171317417ζ1715179178172ζ171417121751731715179178172    orthogonal lifted from C2×C17⋊C4
ρ174440000000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172ζ17141712175173ζ17111710177176ζ1715179178172ζ17111710177176ζ17141712175173ζ17141712175173ζ1716171317417ζ1715179178172ζ1715179178172ζ1716171317417ζ17111710177176ζ1716171317417    orthogonal lifted from C17⋊C4
ρ1844-40000000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172ζ1714171217517317111710177176171517917817217111710177176171417121751731714171217517317161713174171715179178172ζ1715179178172ζ1716171317417ζ171117101771761716171317417    orthogonal lifted from C2×C17⋊C4
ρ194-400000000ζ17111710177176ζ1715179178172ζ1716171317417ζ171417121751731716171317417171517917817217141712175173ζ1715179178172ζ1716171317417171617131741717111710177176ζ1714171217517317141712175173171117101771761715179178172ζ17111710177176    symplectic faithful, Schur index 2
ρ204-400000000ζ17141712175173ζ1716171317417ζ1715179178172ζ1711171017717617151791781721716171317417ζ17111710177176ζ17161713174171715179178172ζ1715179178172171417121751731711171017717617111710177176171417121751731716171317417ζ17141712175173    symplectic faithful, Schur index 2
ρ214-400000000ζ1716171317417ζ17111710177176ζ17141712175173ζ171517917817217141712175173ζ1711171017717617151791781721711171017717617141712175173ζ17141712175173ζ1716171317417ζ171517917817217151791781721716171317417171117101771761716171317417    symplectic faithful, Schur index 2
ρ224-400000000ζ1715179178172ζ17141712175173ζ17111710177176ζ171617131741717111710177176ζ17141712175173171617131741717141712175173ζ17111710177176171117101771761715179178172ζ17161713174171716171317417171517917817217141712175173ζ1715179178172    symplectic faithful, Schur index 2
ρ234-400000000ζ1716171317417ζ17111710177176ζ17141712175173ζ17151791781721714171217517317111710177176ζ1715179178172ζ17111710177176ζ1714171217517317141712175173171617131741717151791781721715179178172171617131741717111710177176ζ1716171317417    symplectic faithful, Schur index 2
ρ244-400000000ζ17111710177176ζ1715179178172ζ1716171317417ζ171417121751731716171317417ζ1715179178172ζ1714171217517317151791781721716171317417ζ1716171317417ζ17111710177176171417121751731714171217517317111710177176171517917817217111710177176    symplectic faithful, Schur index 2
ρ254-400000000ζ1715179178172ζ17141712175173ζ17111710177176ζ17161713174171711171017717617141712175173ζ1716171317417ζ1714171217517317111710177176ζ17111710177176ζ1715179178172171617131741717161713174171715179178172171417121751731715179178172    symplectic faithful, Schur index 2
ρ264-400000000ζ17141712175173ζ1716171317417ζ1715179178172ζ171117101771761715179178172ζ1716171317417171117101771761716171317417ζ17151791781721715179178172ζ17141712175173ζ171117101771761711171017717617141712175173171617131741717141712175173    symplectic faithful, Schur index 2

Smallest permutation representation of C17⋊M4(2)
On 136 points
Generators in S136
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 108 35 100 18 130 52 70)(2 104 51 87 19 126 68 74)(3 117 50 91 20 122 67 78)(4 113 49 95 21 135 66 82)(5 109 48 99 22 131 65 69)(6 105 47 86 23 127 64 73)(7 118 46 90 24 123 63 77)(8 114 45 94 25 136 62 81)(9 110 44 98 26 132 61 85)(10 106 43 102 27 128 60 72)(11 119 42 89 28 124 59 76)(12 115 41 93 29 120 58 80)(13 111 40 97 30 133 57 84)(14 107 39 101 31 129 56 71)(15 103 38 88 32 125 55 75)(16 116 37 92 33 121 54 79)(17 112 36 96 34 134 53 83)
(69 99)(70 100)(71 101)(72 102)(73 86)(74 87)(75 88)(76 89)(77 90)(78 91)(79 92)(80 93)(81 94)(82 95)(83 96)(84 97)(85 98)(103 125)(104 126)(105 127)(106 128)(107 129)(108 130)(109 131)(110 132)(111 133)(112 134)(113 135)(114 136)(115 120)(116 121)(117 122)(118 123)(119 124)

G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,108,35,100,18,130,52,70)(2,104,51,87,19,126,68,74)(3,117,50,91,20,122,67,78)(4,113,49,95,21,135,66,82)(5,109,48,99,22,131,65,69)(6,105,47,86,23,127,64,73)(7,118,46,90,24,123,63,77)(8,114,45,94,25,136,62,81)(9,110,44,98,26,132,61,85)(10,106,43,102,27,128,60,72)(11,119,42,89,28,124,59,76)(12,115,41,93,29,120,58,80)(13,111,40,97,30,133,57,84)(14,107,39,101,31,129,56,71)(15,103,38,88,32,125,55,75)(16,116,37,92,33,121,54,79)(17,112,36,96,34,134,53,83), (69,99)(70,100)(71,101)(72,102)(73,86)(74,87)(75,88)(76,89)(77,90)(78,91)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134)(113,135)(114,136)(115,120)(116,121)(117,122)(118,123)(119,124)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,108,35,100,18,130,52,70)(2,104,51,87,19,126,68,74)(3,117,50,91,20,122,67,78)(4,113,49,95,21,135,66,82)(5,109,48,99,22,131,65,69)(6,105,47,86,23,127,64,73)(7,118,46,90,24,123,63,77)(8,114,45,94,25,136,62,81)(9,110,44,98,26,132,61,85)(10,106,43,102,27,128,60,72)(11,119,42,89,28,124,59,76)(12,115,41,93,29,120,58,80)(13,111,40,97,30,133,57,84)(14,107,39,101,31,129,56,71)(15,103,38,88,32,125,55,75)(16,116,37,92,33,121,54,79)(17,112,36,96,34,134,53,83), (69,99)(70,100)(71,101)(72,102)(73,86)(74,87)(75,88)(76,89)(77,90)(78,91)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134)(113,135)(114,136)(115,120)(116,121)(117,122)(118,123)(119,124) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,108,35,100,18,130,52,70),(2,104,51,87,19,126,68,74),(3,117,50,91,20,122,67,78),(4,113,49,95,21,135,66,82),(5,109,48,99,22,131,65,69),(6,105,47,86,23,127,64,73),(7,118,46,90,24,123,63,77),(8,114,45,94,25,136,62,81),(9,110,44,98,26,132,61,85),(10,106,43,102,27,128,60,72),(11,119,42,89,28,124,59,76),(12,115,41,93,29,120,58,80),(13,111,40,97,30,133,57,84),(14,107,39,101,31,129,56,71),(15,103,38,88,32,125,55,75),(16,116,37,92,33,121,54,79),(17,112,36,96,34,134,53,83)], [(69,99),(70,100),(71,101),(72,102),(73,86),(74,87),(75,88),(76,89),(77,90),(78,91),(79,92),(80,93),(81,94),(82,95),(83,96),(84,97),(85,98),(103,125),(104,126),(105,127),(106,128),(107,129),(108,130),(109,131),(110,132),(111,133),(112,134),(113,135),(114,136),(115,120),(116,121),(117,122),(118,123),(119,124)]])

Matrix representation of C17⋊M4(2) in GL4(𝔽137) generated by

136100
1112500
00128116
004385
,
0010
0001
1187000
1241900
,
1000
0100
001360
000136
G:=sub<GL(4,GF(137))| [136,11,0,0,1,125,0,0,0,0,128,43,0,0,116,85],[0,0,118,124,0,0,70,19,1,0,0,0,0,1,0,0],[1,0,0,0,0,1,0,0,0,0,136,0,0,0,0,136] >;

C17⋊M4(2) in GAP, Magma, Sage, TeX

C_{17}\rtimes M_4(2)
% in TeX

G:=Group("C17:M4(2)");
// GroupNames label

G:=SmallGroup(272,34);
// by ID

G=gap.SmallGroup(272,34);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,20,101,42,5204,1614]);
// Polycyclic

G:=Group<a,b,c|a^17=b^8=c^2=1,b*a*b^-1=a^4,a*c=c*a,c*b*c=b^5>;
// generators/relations

Export

Subgroup lattice of C17⋊M4(2) in TeX
Character table of C17⋊M4(2) in TeX

׿
×
𝔽