Extensions 1→N→G→Q→1 with N=C6 and Q=C4×Dic3

Direct product G=N×Q with N=C6 and Q=C4×Dic3
dρLabelID
Dic3×C2×C1296Dic3xC2xC12288,693

Semidirect products G=N:Q with N=C6 and Q=C4×Dic3
extensionφ:Q→Aut NdρLabelID
C61(C4×Dic3) = C2×Dic32φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C696C6:1(C4xDic3)288,602
C62(C4×Dic3) = C2×C4×C3⋊Dic3φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6:2(C4xDic3)288,779

Non-split extensions G=N.Q with N=C6 and Q=C4×Dic3
extensionφ:Q→Aut NdρLabelID
C6.1(C4×Dic3) = Dic3×C3⋊C8φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C696C6.1(C4xDic3)288,200
C6.2(C4×Dic3) = C6.(S3×C8)φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C696C6.2(C4xDic3)288,201
C6.3(C4×Dic3) = C3⋊C8⋊Dic3φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C696C6.3(C4xDic3)288,202
C6.4(C4×Dic3) = C2.Dic32φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C696C6.4(C4xDic3)288,203
C6.5(C4×Dic3) = C62.6Q8φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C696C6.5(C4xDic3)288,227
C6.6(C4×Dic3) = C4×C9⋊C8φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.6(C4xDic3)288,9
C6.7(C4×Dic3) = C42.D9φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.7(C4xDic3)288,10
C6.8(C4×Dic3) = C8×Dic9φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.8(C4xDic3)288,21
C6.9(C4×Dic3) = C72⋊C4φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.9(C4xDic3)288,23
C6.10(C4×Dic3) = C18.C42φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.10(C4xDic3)288,38
C6.11(C4×Dic3) = C2×C4×Dic9φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.11(C4xDic3)288,132
C6.12(C4×Dic3) = C4×C324C8φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.12(C4xDic3)288,277
C6.13(C4×Dic3) = C122.C2φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.13(C4xDic3)288,278
C6.14(C4×Dic3) = C8×C3⋊Dic3φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.14(C4xDic3)288,288
C6.15(C4×Dic3) = C24⋊Dic3φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.15(C4xDic3)288,290
C6.16(C4×Dic3) = C62.15Q8φ: C4×Dic3/C2×C12C2 ⊆ Aut C6288C6.16(C4xDic3)288,306
C6.17(C4×Dic3) = C12×C3⋊C8central extension (φ=1)96C6.17(C4xDic3)288,236
C6.18(C4×Dic3) = C3×C42.S3central extension (φ=1)96C6.18(C4xDic3)288,237
C6.19(C4×Dic3) = Dic3×C24central extension (φ=1)96C6.19(C4xDic3)288,247
C6.20(C4×Dic3) = C3×C24⋊C4central extension (φ=1)96C6.20(C4xDic3)288,249
C6.21(C4×Dic3) = C3×C6.C42central extension (φ=1)96C6.21(C4xDic3)288,265

׿
×
𝔽