extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C4×Dic3) = Dic3×C3⋊C8 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.1(C4xDic3) | 288,200 |
C6.2(C4×Dic3) = C6.(S3×C8) | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.2(C4xDic3) | 288,201 |
C6.3(C4×Dic3) = C3⋊C8⋊Dic3 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.3(C4xDic3) | 288,202 |
C6.4(C4×Dic3) = C2.Dic32 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.4(C4xDic3) | 288,203 |
C6.5(C4×Dic3) = C62.6Q8 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.5(C4xDic3) | 288,227 |
C6.6(C4×Dic3) = C4×C9⋊C8 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.6(C4xDic3) | 288,9 |
C6.7(C4×Dic3) = C42.D9 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.7(C4xDic3) | 288,10 |
C6.8(C4×Dic3) = C8×Dic9 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.8(C4xDic3) | 288,21 |
C6.9(C4×Dic3) = C72⋊C4 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.9(C4xDic3) | 288,23 |
C6.10(C4×Dic3) = C18.C42 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.10(C4xDic3) | 288,38 |
C6.11(C4×Dic3) = C2×C4×Dic9 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.11(C4xDic3) | 288,132 |
C6.12(C4×Dic3) = C4×C32⋊4C8 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.12(C4xDic3) | 288,277 |
C6.13(C4×Dic3) = C122.C2 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.13(C4xDic3) | 288,278 |
C6.14(C4×Dic3) = C8×C3⋊Dic3 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.14(C4xDic3) | 288,288 |
C6.15(C4×Dic3) = C24⋊Dic3 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.15(C4xDic3) | 288,290 |
C6.16(C4×Dic3) = C62.15Q8 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.16(C4xDic3) | 288,306 |
C6.17(C4×Dic3) = C12×C3⋊C8 | central extension (φ=1) | 96 | | C6.17(C4xDic3) | 288,236 |
C6.18(C4×Dic3) = C3×C42.S3 | central extension (φ=1) | 96 | | C6.18(C4xDic3) | 288,237 |
C6.19(C4×Dic3) = Dic3×C24 | central extension (φ=1) | 96 | | C6.19(C4xDic3) | 288,247 |
C6.20(C4×Dic3) = C3×C24⋊C4 | central extension (φ=1) | 96 | | C6.20(C4xDic3) | 288,249 |
C6.21(C4×Dic3) = C3×C6.C42 | central extension (φ=1) | 96 | | C6.21(C4xDic3) | 288,265 |