direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×Dic3, C3⋊C42, C12⋊2C4, C22.3D6, C2.2(C4×S3), C6.7(C2×C4), (C2×C4).6S3, (C2×C12).6C2, (C2×C6).3C22, C2.2(C2×Dic3), (C2×Dic3).4C2, SmallGroup(48,11)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — C4×Dic3 |
Generators and relations for C4×Dic3
G = < a,b,c | a4=b6=1, c2=b3, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C4×Dic3
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 6A | 6B | 6C | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | i | -1 | 1 | -1 | 1 | -i | i | -i | -1 | -1 | 1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -i | -i | i | i | -i | -i | i | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | i | i | -i | -i | i | i | -i | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -i | 1 | -1 | 1 | -1 | i | -i | i | -1 | -1 | 1 | -i | -i | i | i | linear of order 4 |
ρ9 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -1 | i | -i | -i | i | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | i | i | -i | -i | -i | -i | i | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | -i | -i | i | i | i | i | -i | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | i | 1 | -1 | 1 | -1 | -i | i | -i | -1 | -1 | 1 | i | i | -i | -i | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -1 | -i | i | i | -i | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | i | -i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | -i | -1 | 1 | -1 | 1 | i | -i | i | -1 | -1 | 1 | i | i | -i | -i | linear of order 4 |
ρ15 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | 1 | -i | i | i | -i | 1 | -1 | -1 | -1 | 1 | -1 | -i | i | -i | i | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | 1 | i | -i | -i | i | 1 | -1 | -1 | -1 | 1 | -1 | i | -i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ19 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ20 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | -1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -i | -i | i | i | complex lifted from C4×S3 |
ρ22 | 2 | -2 | -2 | 2 | -1 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -i | i | -i | i | complex lifted from C4×S3 |
ρ23 | 2 | -2 | 2 | -2 | -1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | i | i | -i | -i | complex lifted from C4×S3 |
ρ24 | 2 | -2 | -2 | 2 | -1 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | i | -i | i | -i | complex lifted from C4×S3 |
(1 27 16 24)(2 28 17 19)(3 29 18 20)(4 30 13 21)(5 25 14 22)(6 26 15 23)(7 38 45 33)(8 39 46 34)(9 40 47 35)(10 41 48 36)(11 42 43 31)(12 37 44 32)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 38 4 41)(2 37 5 40)(3 42 6 39)(7 21 10 24)(8 20 11 23)(9 19 12 22)(13 36 16 33)(14 35 17 32)(15 34 18 31)(25 47 28 44)(26 46 29 43)(27 45 30 48)
G:=sub<Sym(48)| (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,38,45,33)(8,39,46,34)(9,40,47,35)(10,41,48,36)(11,42,43,31)(12,37,44,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,38,4,41)(2,37,5,40)(3,42,6,39)(7,21,10,24)(8,20,11,23)(9,19,12,22)(13,36,16,33)(14,35,17,32)(15,34,18,31)(25,47,28,44)(26,46,29,43)(27,45,30,48)>;
G:=Group( (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,38,45,33)(8,39,46,34)(9,40,47,35)(10,41,48,36)(11,42,43,31)(12,37,44,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,38,4,41)(2,37,5,40)(3,42,6,39)(7,21,10,24)(8,20,11,23)(9,19,12,22)(13,36,16,33)(14,35,17,32)(15,34,18,31)(25,47,28,44)(26,46,29,43)(27,45,30,48) );
G=PermutationGroup([[(1,27,16,24),(2,28,17,19),(3,29,18,20),(4,30,13,21),(5,25,14,22),(6,26,15,23),(7,38,45,33),(8,39,46,34),(9,40,47,35),(10,41,48,36),(11,42,43,31),(12,37,44,32)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,38,4,41),(2,37,5,40),(3,42,6,39),(7,21,10,24),(8,20,11,23),(9,19,12,22),(13,36,16,33),(14,35,17,32),(15,34,18,31),(25,47,28,44),(26,46,29,43),(27,45,30,48)]])
C4×Dic3 is a maximal subgroup of
Dic3⋊C8 C24⋊C4 D12⋊C4 Q8⋊3Dic3 S3×C42 C42⋊2S3 C23.16D6 C23.8D6 Dic3⋊4D4 C23.11D6 Dic6⋊C4 C12⋊Q8 Dic3.Q8 C4.Dic6 C4⋊C4⋊7S3 Dic3⋊5D4 C4⋊C4⋊S3 C23.26D6 C23.12D6 C12⋊3D4 Dic3⋊Q8 C12.23D4 C4.A4⋊C4
C4×Dic3 is a maximal quotient of
C42.S3 C24⋊C4 C6.C42
Matrix representation of C4×Dic3 ►in GL3(𝔽13) generated by
8 | 0 | 0 |
0 | 12 | 0 |
0 | 0 | 12 |
1 | 0 | 0 |
0 | 0 | 12 |
0 | 1 | 1 |
12 | 0 | 0 |
0 | 0 | 8 |
0 | 8 | 0 |
G:=sub<GL(3,GF(13))| [8,0,0,0,12,0,0,0,12],[1,0,0,0,0,1,0,12,1],[12,0,0,0,0,8,0,8,0] >;
C4×Dic3 in GAP, Magma, Sage, TeX
C_4\times {\rm Dic}_3
% in TeX
G:=Group("C4xDic3");
// GroupNames label
G:=SmallGroup(48,11);
// by ID
G=gap.SmallGroup(48,11);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,20,46,804]);
// Polycyclic
G:=Group<a,b,c|a^4=b^6=1,c^2=b^3,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C4×Dic3 in TeX
Character table of C4×Dic3 in TeX