extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1(C2×Q8) = C4×Dic18 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.1(C2xQ8) | 288,78 |
C18.2(C2×Q8) = C36⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.2(C2xQ8) | 288,79 |
C18.3(C2×Q8) = C36.6Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.3(C2xQ8) | 288,80 |
C18.4(C2×Q8) = C22⋊2Dic18 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.4(C2xQ8) | 288,88 |
C18.5(C2×Q8) = C36⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.5(C2xQ8) | 288,98 |
C18.6(C2×Q8) = C36.3Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.6(C2xQ8) | 288,100 |
C18.7(C2×Q8) = C2×Dic9⋊C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.7(C2xQ8) | 288,133 |
C18.8(C2×Q8) = C36.49D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.8(C2xQ8) | 288,134 |
C18.9(C2×Q8) = C2×C4⋊Dic9 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.9(C2xQ8) | 288,135 |
C18.10(C2×Q8) = Dic9⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C18 | 288 | | C18.10(C2xQ8) | 288,97 |
C18.11(C2×Q8) = Dic9.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C18 | 288 | | C18.11(C2xQ8) | 288,99 |
C18.12(C2×Q8) = C4⋊C4×D9 | φ: C2×Q8/Q8 → C2 ⊆ Aut C18 | 144 | | C18.12(C2xQ8) | 288,101 |
C18.13(C2×Q8) = D18⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C18 | 144 | | C18.13(C2xQ8) | 288,106 |
C18.14(C2×Q8) = D18⋊2Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C18 | 144 | | C18.14(C2xQ8) | 288,107 |
C18.15(C2×Q8) = Dic9⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C18 | 288 | | C18.15(C2xQ8) | 288,154 |
C18.16(C2×Q8) = Q8×Dic9 | φ: C2×Q8/Q8 → C2 ⊆ Aut C18 | 288 | | C18.16(C2xQ8) | 288,155 |
C18.17(C2×Q8) = D18⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C18 | 144 | | C18.17(C2xQ8) | 288,156 |
C18.18(C2×Q8) = C4⋊C4×C18 | central extension (φ=1) | 288 | | C18.18(C2xQ8) | 288,166 |
C18.19(C2×Q8) = Q8×C36 | central extension (φ=1) | 288 | | C18.19(C2xQ8) | 288,169 |
C18.20(C2×Q8) = C9×C22⋊Q8 | central extension (φ=1) | 144 | | C18.20(C2xQ8) | 288,172 |
C18.21(C2×Q8) = C9×C42.C2 | central extension (φ=1) | 288 | | C18.21(C2xQ8) | 288,175 |
C18.22(C2×Q8) = C9×C4⋊Q8 | central extension (φ=1) | 288 | | C18.22(C2xQ8) | 288,178 |