Extensions 1→N→G→Q→1 with N=C18 and Q=C2×Q8

Direct product G=N×Q with N=C18 and Q=C2×Q8
dρLabelID
Q8×C2×C18288Q8xC2xC18288,369

Semidirect products G=N:Q with N=C18 and Q=C2×Q8
extensionφ:Q→Aut NdρLabelID
C181(C2×Q8) = C22×Dic18φ: C2×Q8/C2×C4C2 ⊆ Aut C18288C18:1(C2xQ8)288,352
C182(C2×Q8) = C2×Q8×D9φ: C2×Q8/Q8C2 ⊆ Aut C18144C18:2(C2xQ8)288,359

Non-split extensions G=N.Q with N=C18 and Q=C2×Q8
extensionφ:Q→Aut NdρLabelID
C18.1(C2×Q8) = C4×Dic18φ: C2×Q8/C2×C4C2 ⊆ Aut C18288C18.1(C2xQ8)288,78
C18.2(C2×Q8) = C362Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C18288C18.2(C2xQ8)288,79
C18.3(C2×Q8) = C36.6Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C18288C18.3(C2xQ8)288,80
C18.4(C2×Q8) = C222Dic18φ: C2×Q8/C2×C4C2 ⊆ Aut C18144C18.4(C2xQ8)288,88
C18.5(C2×Q8) = C36⋊Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C18288C18.5(C2xQ8)288,98
C18.6(C2×Q8) = C36.3Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C18288C18.6(C2xQ8)288,100
C18.7(C2×Q8) = C2×Dic9⋊C4φ: C2×Q8/C2×C4C2 ⊆ Aut C18288C18.7(C2xQ8)288,133
C18.8(C2×Q8) = C36.49D4φ: C2×Q8/C2×C4C2 ⊆ Aut C18144C18.8(C2xQ8)288,134
C18.9(C2×Q8) = C2×C4⋊Dic9φ: C2×Q8/C2×C4C2 ⊆ Aut C18288C18.9(C2xQ8)288,135
C18.10(C2×Q8) = Dic93Q8φ: C2×Q8/Q8C2 ⊆ Aut C18288C18.10(C2xQ8)288,97
C18.11(C2×Q8) = Dic9.Q8φ: C2×Q8/Q8C2 ⊆ Aut C18288C18.11(C2xQ8)288,99
C18.12(C2×Q8) = C4⋊C4×D9φ: C2×Q8/Q8C2 ⊆ Aut C18144C18.12(C2xQ8)288,101
C18.13(C2×Q8) = D18⋊Q8φ: C2×Q8/Q8C2 ⊆ Aut C18144C18.13(C2xQ8)288,106
C18.14(C2×Q8) = D182Q8φ: C2×Q8/Q8C2 ⊆ Aut C18144C18.14(C2xQ8)288,107
C18.15(C2×Q8) = Dic9⋊Q8φ: C2×Q8/Q8C2 ⊆ Aut C18288C18.15(C2xQ8)288,154
C18.16(C2×Q8) = Q8×Dic9φ: C2×Q8/Q8C2 ⊆ Aut C18288C18.16(C2xQ8)288,155
C18.17(C2×Q8) = D183Q8φ: C2×Q8/Q8C2 ⊆ Aut C18144C18.17(C2xQ8)288,156
C18.18(C2×Q8) = C4⋊C4×C18central extension (φ=1)288C18.18(C2xQ8)288,166
C18.19(C2×Q8) = Q8×C36central extension (φ=1)288C18.19(C2xQ8)288,169
C18.20(C2×Q8) = C9×C22⋊Q8central extension (φ=1)144C18.20(C2xQ8)288,172
C18.21(C2×Q8) = C9×C42.C2central extension (φ=1)288C18.21(C2xQ8)288,175
C18.22(C2×Q8) = C9×C4⋊Q8central extension (φ=1)288C18.22(C2xQ8)288,178

׿
×
𝔽