metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D18⋊1Q8, Dic9.7D4, C4⋊C4⋊4D9, C2.6(Q8×D9), C6.88(S3×D4), C2.14(D4×D9), C9⋊2(C22⋊Q8), C6.36(S3×Q8), D18⋊C4.5C2, (C2×C4).34D18, C18.26(C2×D4), C3.(D6⋊Q8), C18.13(C2×Q8), Dic9⋊C4⋊12C2, (C2×Dic18)⋊4C2, (C2×C12).214D6, C18.13(C4○D4), C6.83(C4○D12), (C2×C36).12C22, (C2×C18).37C23, C2.15(D36⋊5C2), C22.51(C22×D9), (C2×Dic9).10C22, (C22×D9).21C22, (C9×C4⋊C4)⋊7C2, (C2×C4×D9).9C2, (C3×C4⋊C4).14S3, (C2×C6).194(C22×S3), SmallGroup(288,106)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D18⋊Q8
G = < a,b,c,d | a18=b2=c4=1, d2=c2, bab=cac-1=dad-1=a-1, cbc-1=a7b, dbd-1=a16b, dcd-1=c-1 >
Subgroups: 500 in 111 conjugacy classes, 42 normal (38 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, C2×C4, Q8, C23, C9, Dic3, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, D9, C18, Dic6, C4×S3, C2×Dic3, C2×C12, C22×S3, C22⋊Q8, Dic9, Dic9, C36, D18, D18, C2×C18, Dic3⋊C4, D6⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, Dic18, C4×D9, C2×Dic9, C2×C36, C22×D9, D6⋊Q8, Dic9⋊C4, D18⋊C4, C9×C4⋊C4, C2×Dic18, C2×C4×D9, D18⋊Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, D9, C22×S3, C22⋊Q8, D18, C4○D12, S3×D4, S3×Q8, C22×D9, D6⋊Q8, D36⋊5C2, D4×D9, Q8×D9, D18⋊Q8
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 21)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)(37 50)(38 49)(39 48)(40 47)(41 46)(42 45)(43 44)(51 54)(52 53)(55 59)(56 58)(60 72)(61 71)(62 70)(63 69)(64 68)(65 67)(73 83)(74 82)(75 81)(76 80)(77 79)(84 90)(85 89)(86 88)(91 101)(92 100)(93 99)(94 98)(95 97)(102 108)(103 107)(104 106)(109 116)(110 115)(111 114)(112 113)(117 126)(118 125)(119 124)(120 123)(121 122)(127 134)(128 133)(129 132)(130 131)(135 144)(136 143)(137 142)(138 141)(139 140)
(1 71 113 34)(2 70 114 33)(3 69 115 32)(4 68 116 31)(5 67 117 30)(6 66 118 29)(7 65 119 28)(8 64 120 27)(9 63 121 26)(10 62 122 25)(11 61 123 24)(12 60 124 23)(13 59 125 22)(14 58 126 21)(15 57 109 20)(16 56 110 19)(17 55 111 36)(18 72 112 35)(37 81 133 99)(38 80 134 98)(39 79 135 97)(40 78 136 96)(41 77 137 95)(42 76 138 94)(43 75 139 93)(44 74 140 92)(45 73 141 91)(46 90 142 108)(47 89 143 107)(48 88 144 106)(49 87 127 105)(50 86 128 104)(51 85 129 103)(52 84 130 102)(53 83 131 101)(54 82 132 100)
(1 131 113 53)(2 130 114 52)(3 129 115 51)(4 128 116 50)(5 127 117 49)(6 144 118 48)(7 143 119 47)(8 142 120 46)(9 141 121 45)(10 140 122 44)(11 139 123 43)(12 138 124 42)(13 137 125 41)(14 136 126 40)(15 135 109 39)(16 134 110 38)(17 133 111 37)(18 132 112 54)(19 98 56 80)(20 97 57 79)(21 96 58 78)(22 95 59 77)(23 94 60 76)(24 93 61 75)(25 92 62 74)(26 91 63 73)(27 108 64 90)(28 107 65 89)(29 106 66 88)(30 105 67 87)(31 104 68 86)(32 103 69 85)(33 102 70 84)(34 101 71 83)(35 100 72 82)(36 99 55 81)
G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,21)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(51,54)(52,53)(55,59)(56,58)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67)(73,83)(74,82)(75,81)(76,80)(77,79)(84,90)(85,89)(86,88)(91,101)(92,100)(93,99)(94,98)(95,97)(102,108)(103,107)(104,106)(109,116)(110,115)(111,114)(112,113)(117,126)(118,125)(119,124)(120,123)(121,122)(127,134)(128,133)(129,132)(130,131)(135,144)(136,143)(137,142)(138,141)(139,140), (1,71,113,34)(2,70,114,33)(3,69,115,32)(4,68,116,31)(5,67,117,30)(6,66,118,29)(7,65,119,28)(8,64,120,27)(9,63,121,26)(10,62,122,25)(11,61,123,24)(12,60,124,23)(13,59,125,22)(14,58,126,21)(15,57,109,20)(16,56,110,19)(17,55,111,36)(18,72,112,35)(37,81,133,99)(38,80,134,98)(39,79,135,97)(40,78,136,96)(41,77,137,95)(42,76,138,94)(43,75,139,93)(44,74,140,92)(45,73,141,91)(46,90,142,108)(47,89,143,107)(48,88,144,106)(49,87,127,105)(50,86,128,104)(51,85,129,103)(52,84,130,102)(53,83,131,101)(54,82,132,100), (1,131,113,53)(2,130,114,52)(3,129,115,51)(4,128,116,50)(5,127,117,49)(6,144,118,48)(7,143,119,47)(8,142,120,46)(9,141,121,45)(10,140,122,44)(11,139,123,43)(12,138,124,42)(13,137,125,41)(14,136,126,40)(15,135,109,39)(16,134,110,38)(17,133,111,37)(18,132,112,54)(19,98,56,80)(20,97,57,79)(21,96,58,78)(22,95,59,77)(23,94,60,76)(24,93,61,75)(25,92,62,74)(26,91,63,73)(27,108,64,90)(28,107,65,89)(29,106,66,88)(30,105,67,87)(31,104,68,86)(32,103,69,85)(33,102,70,84)(34,101,71,83)(35,100,72,82)(36,99,55,81)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,21)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(51,54)(52,53)(55,59)(56,58)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67)(73,83)(74,82)(75,81)(76,80)(77,79)(84,90)(85,89)(86,88)(91,101)(92,100)(93,99)(94,98)(95,97)(102,108)(103,107)(104,106)(109,116)(110,115)(111,114)(112,113)(117,126)(118,125)(119,124)(120,123)(121,122)(127,134)(128,133)(129,132)(130,131)(135,144)(136,143)(137,142)(138,141)(139,140), (1,71,113,34)(2,70,114,33)(3,69,115,32)(4,68,116,31)(5,67,117,30)(6,66,118,29)(7,65,119,28)(8,64,120,27)(9,63,121,26)(10,62,122,25)(11,61,123,24)(12,60,124,23)(13,59,125,22)(14,58,126,21)(15,57,109,20)(16,56,110,19)(17,55,111,36)(18,72,112,35)(37,81,133,99)(38,80,134,98)(39,79,135,97)(40,78,136,96)(41,77,137,95)(42,76,138,94)(43,75,139,93)(44,74,140,92)(45,73,141,91)(46,90,142,108)(47,89,143,107)(48,88,144,106)(49,87,127,105)(50,86,128,104)(51,85,129,103)(52,84,130,102)(53,83,131,101)(54,82,132,100), (1,131,113,53)(2,130,114,52)(3,129,115,51)(4,128,116,50)(5,127,117,49)(6,144,118,48)(7,143,119,47)(8,142,120,46)(9,141,121,45)(10,140,122,44)(11,139,123,43)(12,138,124,42)(13,137,125,41)(14,136,126,40)(15,135,109,39)(16,134,110,38)(17,133,111,37)(18,132,112,54)(19,98,56,80)(20,97,57,79)(21,96,58,78)(22,95,59,77)(23,94,60,76)(24,93,61,75)(25,92,62,74)(26,91,63,73)(27,108,64,90)(28,107,65,89)(29,106,66,88)(30,105,67,87)(31,104,68,86)(32,103,69,85)(33,102,70,84)(34,101,71,83)(35,100,72,82)(36,99,55,81) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,21),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30),(37,50),(38,49),(39,48),(40,47),(41,46),(42,45),(43,44),(51,54),(52,53),(55,59),(56,58),(60,72),(61,71),(62,70),(63,69),(64,68),(65,67),(73,83),(74,82),(75,81),(76,80),(77,79),(84,90),(85,89),(86,88),(91,101),(92,100),(93,99),(94,98),(95,97),(102,108),(103,107),(104,106),(109,116),(110,115),(111,114),(112,113),(117,126),(118,125),(119,124),(120,123),(121,122),(127,134),(128,133),(129,132),(130,131),(135,144),(136,143),(137,142),(138,141),(139,140)], [(1,71,113,34),(2,70,114,33),(3,69,115,32),(4,68,116,31),(5,67,117,30),(6,66,118,29),(7,65,119,28),(8,64,120,27),(9,63,121,26),(10,62,122,25),(11,61,123,24),(12,60,124,23),(13,59,125,22),(14,58,126,21),(15,57,109,20),(16,56,110,19),(17,55,111,36),(18,72,112,35),(37,81,133,99),(38,80,134,98),(39,79,135,97),(40,78,136,96),(41,77,137,95),(42,76,138,94),(43,75,139,93),(44,74,140,92),(45,73,141,91),(46,90,142,108),(47,89,143,107),(48,88,144,106),(49,87,127,105),(50,86,128,104),(51,85,129,103),(52,84,130,102),(53,83,131,101),(54,82,132,100)], [(1,131,113,53),(2,130,114,52),(3,129,115,51),(4,128,116,50),(5,127,117,49),(6,144,118,48),(7,143,119,47),(8,142,120,46),(9,141,121,45),(10,140,122,44),(11,139,123,43),(12,138,124,42),(13,137,125,41),(14,136,126,40),(15,135,109,39),(16,134,110,38),(17,133,111,37),(18,132,112,54),(19,98,56,80),(20,97,57,79),(21,96,58,78),(22,95,59,77),(23,94,60,76),(24,93,61,75),(25,92,62,74),(26,91,63,73),(27,108,64,90),(28,107,65,89),(29,106,66,88),(30,105,67,87),(31,104,68,86),(32,103,69,85),(33,102,70,84),(34,101,71,83),(35,100,72,82),(36,99,55,81)]])
54 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 9A | 9B | 9C | 12A | ··· | 12F | 18A | ··· | 18I | 36A | ··· | 36R |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 9 | 9 | 9 | 12 | ··· | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
| size | 1 | 1 | 1 | 1 | 18 | 18 | 2 | 2 | 2 | 4 | 4 | 18 | 18 | 36 | 36 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
54 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | - | + | + | + | + | - | + | - | |||
| image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | Q8 | D6 | C4○D4 | D9 | D18 | C4○D12 | D36⋊5C2 | S3×D4 | S3×Q8 | D4×D9 | Q8×D9 |
| kernel | D18⋊Q8 | Dic9⋊C4 | D18⋊C4 | C9×C4⋊C4 | C2×Dic18 | C2×C4×D9 | C3×C4⋊C4 | Dic9 | D18 | C2×C12 | C18 | C4⋊C4 | C2×C4 | C6 | C2 | C6 | C6 | C2 | C2 |
| # reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 3 | 9 | 4 | 12 | 1 | 1 | 3 | 3 |
Matrix representation of D18⋊Q8 ►in GL4(𝔽37) generated by
| 17 | 31 | 0 | 0 |
| 6 | 11 | 0 | 0 |
| 0 | 0 | 36 | 0 |
| 0 | 0 | 0 | 36 |
| 6 | 11 | 0 | 0 |
| 17 | 31 | 0 | 0 |
| 0 | 0 | 36 | 0 |
| 0 | 0 | 13 | 1 |
| 23 | 7 | 0 | 0 |
| 30 | 14 | 0 | 0 |
| 0 | 0 | 1 | 3 |
| 0 | 0 | 0 | 36 |
| 0 | 31 | 0 | 0 |
| 31 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(37))| [17,6,0,0,31,11,0,0,0,0,36,0,0,0,0,36],[6,17,0,0,11,31,0,0,0,0,36,13,0,0,0,1],[23,30,0,0,7,14,0,0,0,0,1,0,0,0,3,36],[0,31,0,0,31,0,0,0,0,0,1,0,0,0,0,1] >;
D18⋊Q8 in GAP, Magma, Sage, TeX
D_{18}\rtimes Q_8 % in TeX
G:=Group("D18:Q8"); // GroupNames label
G:=SmallGroup(288,106);
// by ID
G=gap.SmallGroup(288,106);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,64,590,219,100,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^18=b^2=c^4=1,d^2=c^2,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^7*b,d*b*d^-1=a^16*b,d*c*d^-1=c^-1>;
// generators/relations