Copied to
clipboard

G = D182Q8order 288 = 25·32

2nd semidirect product of D18 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D182Q8, C36.11D4, C4.13D36, C12.6D12, C4⋊C45D9, C2.7(Q8×D9), C4⋊Dic96C2, C18.8(C2×D4), C93(C22⋊Q8), C6.37(S3×Q8), D18⋊C4.2C2, (C2×C4).10D18, C6.37(C2×D12), C2.10(C2×D36), (C2×C12).10D6, C3.(C4.D12), C18.14(C2×Q8), (C2×Dic18)⋊7C2, C18.27(C4○D4), (C2×C18).38C23, (C2×C36).13C22, C2.13(D42D9), C6.83(D42S3), C22.52(C22×D9), (C2×Dic9).11C22, (C22×D9).22C22, (C9×C4⋊C4)⋊8C2, (C2×C4×D9).2C2, (C3×C4⋊C4).15S3, (C2×C6).195(C22×S3), SmallGroup(288,107)

Series: Derived Chief Lower central Upper central

C1C2×C18 — D182Q8
C1C3C9C18C2×C18C22×D9C2×C4×D9 — D182Q8
C9C2×C18 — D182Q8
C1C22C4⋊C4

Generators and relations for D182Q8
 G = < a,b,c | a4=b36=1, c2=a2, bab-1=cac-1=a-1, cbc-1=a2b-1 >

Subgroups: 500 in 111 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, Q8, C23, C9, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, D9, C18, Dic6, C4×S3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22⋊Q8, Dic9, C36, C36, D18, D18, C2×C18, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, Dic18, C4×D9, C2×Dic9, C2×Dic9, C2×C36, C2×C36, C22×D9, C4.D12, C4⋊Dic9, D18⋊C4, C9×C4⋊C4, C2×Dic18, C2×C4×D9, D182Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, D9, D12, C22×S3, C22⋊Q8, D18, C2×D12, D42S3, S3×Q8, D36, C22×D9, C4.D12, C2×D36, D42D9, Q8×D9, D182Q8

Smallest permutation representation of D182Q8
On 144 points
Generators in S144
(1 64 76 123)(2 124 77 65)(3 66 78 125)(4 126 79 67)(5 68 80 127)(6 128 81 69)(7 70 82 129)(8 130 83 71)(9 72 84 131)(10 132 85 37)(11 38 86 133)(12 134 87 39)(13 40 88 135)(14 136 89 41)(15 42 90 137)(16 138 91 43)(17 44 92 139)(18 140 93 45)(19 46 94 141)(20 142 95 47)(21 48 96 143)(22 144 97 49)(23 50 98 109)(24 110 99 51)(25 52 100 111)(26 112 101 53)(27 54 102 113)(28 114 103 55)(29 56 104 115)(30 116 105 57)(31 58 106 117)(32 118 107 59)(33 60 108 119)(34 120 73 61)(35 62 74 121)(36 122 75 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 75 76 36)(2 35 77 74)(3 73 78 34)(4 33 79 108)(5 107 80 32)(6 31 81 106)(7 105 82 30)(8 29 83 104)(9 103 84 28)(10 27 85 102)(11 101 86 26)(12 25 87 100)(13 99 88 24)(14 23 89 98)(15 97 90 22)(16 21 91 96)(17 95 92 20)(18 19 93 94)(37 54 132 113)(38 112 133 53)(39 52 134 111)(40 110 135 51)(41 50 136 109)(42 144 137 49)(43 48 138 143)(44 142 139 47)(45 46 140 141)(55 72 114 131)(56 130 115 71)(57 70 116 129)(58 128 117 69)(59 68 118 127)(60 126 119 67)(61 66 120 125)(62 124 121 65)(63 64 122 123)

G:=sub<Sym(144)| (1,64,76,123)(2,124,77,65)(3,66,78,125)(4,126,79,67)(5,68,80,127)(6,128,81,69)(7,70,82,129)(8,130,83,71)(9,72,84,131)(10,132,85,37)(11,38,86,133)(12,134,87,39)(13,40,88,135)(14,136,89,41)(15,42,90,137)(16,138,91,43)(17,44,92,139)(18,140,93,45)(19,46,94,141)(20,142,95,47)(21,48,96,143)(22,144,97,49)(23,50,98,109)(24,110,99,51)(25,52,100,111)(26,112,101,53)(27,54,102,113)(28,114,103,55)(29,56,104,115)(30,116,105,57)(31,58,106,117)(32,118,107,59)(33,60,108,119)(34,120,73,61)(35,62,74,121)(36,122,75,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,75,76,36)(2,35,77,74)(3,73,78,34)(4,33,79,108)(5,107,80,32)(6,31,81,106)(7,105,82,30)(8,29,83,104)(9,103,84,28)(10,27,85,102)(11,101,86,26)(12,25,87,100)(13,99,88,24)(14,23,89,98)(15,97,90,22)(16,21,91,96)(17,95,92,20)(18,19,93,94)(37,54,132,113)(38,112,133,53)(39,52,134,111)(40,110,135,51)(41,50,136,109)(42,144,137,49)(43,48,138,143)(44,142,139,47)(45,46,140,141)(55,72,114,131)(56,130,115,71)(57,70,116,129)(58,128,117,69)(59,68,118,127)(60,126,119,67)(61,66,120,125)(62,124,121,65)(63,64,122,123)>;

G:=Group( (1,64,76,123)(2,124,77,65)(3,66,78,125)(4,126,79,67)(5,68,80,127)(6,128,81,69)(7,70,82,129)(8,130,83,71)(9,72,84,131)(10,132,85,37)(11,38,86,133)(12,134,87,39)(13,40,88,135)(14,136,89,41)(15,42,90,137)(16,138,91,43)(17,44,92,139)(18,140,93,45)(19,46,94,141)(20,142,95,47)(21,48,96,143)(22,144,97,49)(23,50,98,109)(24,110,99,51)(25,52,100,111)(26,112,101,53)(27,54,102,113)(28,114,103,55)(29,56,104,115)(30,116,105,57)(31,58,106,117)(32,118,107,59)(33,60,108,119)(34,120,73,61)(35,62,74,121)(36,122,75,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,75,76,36)(2,35,77,74)(3,73,78,34)(4,33,79,108)(5,107,80,32)(6,31,81,106)(7,105,82,30)(8,29,83,104)(9,103,84,28)(10,27,85,102)(11,101,86,26)(12,25,87,100)(13,99,88,24)(14,23,89,98)(15,97,90,22)(16,21,91,96)(17,95,92,20)(18,19,93,94)(37,54,132,113)(38,112,133,53)(39,52,134,111)(40,110,135,51)(41,50,136,109)(42,144,137,49)(43,48,138,143)(44,142,139,47)(45,46,140,141)(55,72,114,131)(56,130,115,71)(57,70,116,129)(58,128,117,69)(59,68,118,127)(60,126,119,67)(61,66,120,125)(62,124,121,65)(63,64,122,123) );

G=PermutationGroup([[(1,64,76,123),(2,124,77,65),(3,66,78,125),(4,126,79,67),(5,68,80,127),(6,128,81,69),(7,70,82,129),(8,130,83,71),(9,72,84,131),(10,132,85,37),(11,38,86,133),(12,134,87,39),(13,40,88,135),(14,136,89,41),(15,42,90,137),(16,138,91,43),(17,44,92,139),(18,140,93,45),(19,46,94,141),(20,142,95,47),(21,48,96,143),(22,144,97,49),(23,50,98,109),(24,110,99,51),(25,52,100,111),(26,112,101,53),(27,54,102,113),(28,114,103,55),(29,56,104,115),(30,116,105,57),(31,58,106,117),(32,118,107,59),(33,60,108,119),(34,120,73,61),(35,62,74,121),(36,122,75,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,75,76,36),(2,35,77,74),(3,73,78,34),(4,33,79,108),(5,107,80,32),(6,31,81,106),(7,105,82,30),(8,29,83,104),(9,103,84,28),(10,27,85,102),(11,101,86,26),(12,25,87,100),(13,99,88,24),(14,23,89,98),(15,97,90,22),(16,21,91,96),(17,95,92,20),(18,19,93,94),(37,54,132,113),(38,112,133,53),(39,52,134,111),(40,110,135,51),(41,50,136,109),(42,144,137,49),(43,48,138,143),(44,142,139,47),(45,46,140,141),(55,72,114,131),(56,130,115,71),(57,70,116,129),(58,128,117,69),(59,68,118,127),(60,126,119,67),(61,66,120,125),(62,124,121,65),(63,64,122,123)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A6B6C9A9B9C12A···12F18A···18I36A···36R
order12222234444444466699912···1218···1836···36
size1111181822244181836362222224···42···24···4

54 irreducible representations

dim1111112222222224444
type++++++++-+++++----
imageC1C2C2C2C2C2S3D4Q8D6C4○D4D9D12D18D36D42S3S3×Q8D42D9Q8×D9
kernelD182Q8C4⋊Dic9D18⋊C4C9×C4⋊C4C2×Dic18C2×C4×D9C3×C4⋊C4C36D18C2×C12C18C4⋊C4C12C2×C4C4C6C6C2C2
# reps12211112232349121133

Matrix representation of D182Q8 in GL4(𝔽37) generated by

36000
03600
0060
00331
,
291200
25400
00273
00410
,
25800
331200
00273
002810
G:=sub<GL(4,GF(37))| [36,0,0,0,0,36,0,0,0,0,6,3,0,0,0,31],[29,25,0,0,12,4,0,0,0,0,27,4,0,0,3,10],[25,33,0,0,8,12,0,0,0,0,27,28,0,0,3,10] >;

D182Q8 in GAP, Magma, Sage, TeX

D_{18}\rtimes_2Q_8
% in TeX

G:=Group("D18:2Q8");
// GroupNames label

G:=SmallGroup(288,107);
// by ID

G=gap.SmallGroup(288,107);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,219,142,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^4=b^36=1,c^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^2*b^-1>;
// generators/relations

׿
×
𝔽