# Extensions 1→N→G→Q→1 with N=C22×C4 and Q=C3⋊S3

Direct product G=N×Q with N=C22×C4 and Q=C3⋊S3
dρLabelID
C22×C4×C3⋊S3144C2^2xC4xC3:S3288,1004

Semidirect products G=N:Q with N=C22×C4 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
(C22×C4)⋊1(C3⋊S3) = C4×C3⋊S4φ: C3⋊S3/C3S3 ⊆ Aut C22×C4366(C2^2xC4):1(C3:S3)288,908
(C22×C4)⋊2(C3⋊S3) = C12⋊S4φ: C3⋊S3/C3S3 ⊆ Aut C22×C4366+(C2^2xC4):2(C3:S3)288,909
(C22×C4)⋊3(C3⋊S3) = C2×C6.11D12φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4):3(C3:S3)288,784
(C22×C4)⋊4(C3⋊S3) = C4×C327D4φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4):4(C3:S3)288,785
(C22×C4)⋊5(C3⋊S3) = C62.129D4φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4):5(C3:S3)288,786
(C22×C4)⋊6(C3⋊S3) = C6219D4φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4):6(C3:S3)288,787
(C22×C4)⋊7(C3⋊S3) = C22×C12⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4):7(C3:S3)288,1005
(C22×C4)⋊8(C3⋊S3) = C2×C12.59D6φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4):8(C3:S3)288,1006

Non-split extensions G=N.Q with N=C22×C4 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
(C22×C4).1(C3⋊S3) = C12.12S4φ: C3⋊S3/C3S3 ⊆ Aut C22×C4726(C2^2xC4).1(C3:S3)288,402
(C22×C4).2(C3⋊S3) = A4⋊Dic6φ: C3⋊S3/C3S3 ⊆ Aut C22×C4726-(C2^2xC4).2(C3:S3)288,907
(C22×C4).3(C3⋊S3) = C627C8φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4).3(C3:S3)288,305
(C22×C4).4(C3⋊S3) = C62.15Q8φ: C3⋊S3/C32C2 ⊆ Aut C22×C4288(C2^2xC4).4(C3:S3)288,306
(C22×C4).5(C3⋊S3) = C2×C6.Dic6φ: C3⋊S3/C32C2 ⊆ Aut C22×C4288(C2^2xC4).5(C3:S3)288,780
(C22×C4).6(C3⋊S3) = C2×C12.58D6φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4).6(C3:S3)288,778
(C22×C4).7(C3⋊S3) = C6210Q8φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4).7(C3:S3)288,781
(C22×C4).8(C3⋊S3) = C2×C12⋊Dic3φ: C3⋊S3/C32C2 ⊆ Aut C22×C4288(C2^2xC4).8(C3:S3)288,782
(C22×C4).9(C3⋊S3) = C62.247C23φ: C3⋊S3/C32C2 ⊆ Aut C22×C4144(C2^2xC4).9(C3:S3)288,783
(C22×C4).10(C3⋊S3) = C22×C324Q8φ: C3⋊S3/C32C2 ⊆ Aut C22×C4288(C2^2xC4).10(C3:S3)288,1003
(C22×C4).11(C3⋊S3) = C22×C324C8central extension (φ=1)288(C2^2xC4).11(C3:S3)288,777
(C22×C4).12(C3⋊S3) = C2×C4×C3⋊Dic3central extension (φ=1)288(C2^2xC4).12(C3:S3)288,779

׿
×
𝔽