direct product, metabelian, supersoluble, monomial
Aliases: C2×C12.59D6, C62.277C23, (C2×C12)⋊29D6, C6⋊5(C4○D12), (C6×C12)⋊32C22, (C22×C12)⋊12S3, C6.57(S3×C23), (C3×C6).56C24, (C22×C6).167D6, C12⋊S3⋊29C22, (C3×C12).184C23, C12.214(C22×S3), C32⋊7D4⋊16C22, C3⋊Dic3.46C23, C32⋊4Q8⋊27C22, (C2×C62).123C22, (C2×C6×C12)⋊10C2, C3⋊6(C2×C4○D12), (C3×C6)⋊8(C4○D4), C32⋊14(C2×C4○D4), C2.5(C23×C3⋊S3), (C4×C3⋊S3)⋊20C22, (C22×C4)⋊8(C3⋊S3), (C2×C12⋊S3)⋊23C2, C23.32(C2×C3⋊S3), C4.43(C22×C3⋊S3), (C2×C3⋊S3).50C23, (C2×C32⋊7D4)⋊21C2, (C2×C32⋊4Q8)⋊24C2, C22.5(C22×C3⋊S3), (C2×C6).286(C22×S3), (C22×C3⋊S3).106C22, (C2×C3⋊Dic3).182C22, (C2×C4×C3⋊S3)⋊26C2, (C2×C4)⋊10(C2×C3⋊S3), SmallGroup(288,1006)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — C2×C3⋊S3 — C22×C3⋊S3 — C2×C4×C3⋊S3 — C2×C12.59D6 |
Generators and relations for C2×C12.59D6
G = < a,b,c,d | a2=b12=c6=1, d2=b6, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b5, dcd-1=b6c-1 >
Subgroups: 1636 in 492 conjugacy classes, 165 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C2×C4○D4, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C62, C2×Dic6, S3×C2×C4, C2×D12, C4○D12, C2×C3⋊D4, C22×C12, C32⋊4Q8, C4×C3⋊S3, C12⋊S3, C2×C3⋊Dic3, C32⋊7D4, C6×C12, C6×C12, C22×C3⋊S3, C2×C62, C2×C4○D12, C2×C32⋊4Q8, C2×C4×C3⋊S3, C2×C12⋊S3, C12.59D6, C2×C32⋊7D4, C2×C6×C12, C2×C12.59D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C3⋊S3, C22×S3, C2×C4○D4, C2×C3⋊S3, C4○D12, S3×C23, C22×C3⋊S3, C2×C4○D12, C12.59D6, C23×C3⋊S3, C2×C12.59D6
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 85)(12 86)(13 129)(14 130)(15 131)(16 132)(17 121)(18 122)(19 123)(20 124)(21 125)(22 126)(23 127)(24 128)(25 76)(26 77)(27 78)(28 79)(29 80)(30 81)(31 82)(32 83)(33 84)(34 73)(35 74)(36 75)(37 141)(38 142)(39 143)(40 144)(41 133)(42 134)(43 135)(44 136)(45 137)(46 138)(47 139)(48 140)(49 70)(50 71)(51 72)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(97 113)(98 114)(99 115)(100 116)(101 117)(102 118)(103 119)(104 120)(105 109)(106 110)(107 111)(108 112)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 143 15 117 33 65)(2 144 16 118 34 66)(3 133 17 119 35 67)(4 134 18 120 36 68)(5 135 19 109 25 69)(6 136 20 110 26 70)(7 137 21 111 27 71)(8 138 22 112 28 72)(9 139 23 113 29 61)(10 140 24 114 30 62)(11 141 13 115 31 63)(12 142 14 116 32 64)(37 129 99 82 54 85)(38 130 100 83 55 86)(39 131 101 84 56 87)(40 132 102 73 57 88)(41 121 103 74 58 89)(42 122 104 75 59 90)(43 123 105 76 60 91)(44 124 106 77 49 92)(45 125 107 78 50 93)(46 126 108 79 51 94)(47 127 97 80 52 95)(48 128 98 81 53 96)
(1 56 7 50)(2 49 8 55)(3 54 9 60)(4 59 10 53)(5 52 11 58)(6 57 12 51)(13 103 19 97)(14 108 20 102)(15 101 21 107)(16 106 22 100)(17 99 23 105)(18 104 24 98)(25 47 31 41)(26 40 32 46)(27 45 33 39)(28 38 34 44)(29 43 35 37)(30 48 36 42)(61 85 67 91)(62 90 68 96)(63 95 69 89)(64 88 70 94)(65 93 71 87)(66 86 72 92)(73 136 79 142)(74 141 80 135)(75 134 81 140)(76 139 82 133)(77 144 83 138)(78 137 84 143)(109 121 115 127)(110 126 116 132)(111 131 117 125)(112 124 118 130)(113 129 119 123)(114 122 120 128)
G:=sub<Sym(144)| (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,85)(12,86)(13,129)(14,130)(15,131)(16,132)(17,121)(18,122)(19,123)(20,124)(21,125)(22,126)(23,127)(24,128)(25,76)(26,77)(27,78)(28,79)(29,80)(30,81)(31,82)(32,83)(33,84)(34,73)(35,74)(36,75)(37,141)(38,142)(39,143)(40,144)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,70)(50,71)(51,72)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(97,113)(98,114)(99,115)(100,116)(101,117)(102,118)(103,119)(104,120)(105,109)(106,110)(107,111)(108,112), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,143,15,117,33,65)(2,144,16,118,34,66)(3,133,17,119,35,67)(4,134,18,120,36,68)(5,135,19,109,25,69)(6,136,20,110,26,70)(7,137,21,111,27,71)(8,138,22,112,28,72)(9,139,23,113,29,61)(10,140,24,114,30,62)(11,141,13,115,31,63)(12,142,14,116,32,64)(37,129,99,82,54,85)(38,130,100,83,55,86)(39,131,101,84,56,87)(40,132,102,73,57,88)(41,121,103,74,58,89)(42,122,104,75,59,90)(43,123,105,76,60,91)(44,124,106,77,49,92)(45,125,107,78,50,93)(46,126,108,79,51,94)(47,127,97,80,52,95)(48,128,98,81,53,96), (1,56,7,50)(2,49,8,55)(3,54,9,60)(4,59,10,53)(5,52,11,58)(6,57,12,51)(13,103,19,97)(14,108,20,102)(15,101,21,107)(16,106,22,100)(17,99,23,105)(18,104,24,98)(25,47,31,41)(26,40,32,46)(27,45,33,39)(28,38,34,44)(29,43,35,37)(30,48,36,42)(61,85,67,91)(62,90,68,96)(63,95,69,89)(64,88,70,94)(65,93,71,87)(66,86,72,92)(73,136,79,142)(74,141,80,135)(75,134,81,140)(76,139,82,133)(77,144,83,138)(78,137,84,143)(109,121,115,127)(110,126,116,132)(111,131,117,125)(112,124,118,130)(113,129,119,123)(114,122,120,128)>;
G:=Group( (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,85)(12,86)(13,129)(14,130)(15,131)(16,132)(17,121)(18,122)(19,123)(20,124)(21,125)(22,126)(23,127)(24,128)(25,76)(26,77)(27,78)(28,79)(29,80)(30,81)(31,82)(32,83)(33,84)(34,73)(35,74)(36,75)(37,141)(38,142)(39,143)(40,144)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,70)(50,71)(51,72)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(97,113)(98,114)(99,115)(100,116)(101,117)(102,118)(103,119)(104,120)(105,109)(106,110)(107,111)(108,112), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,143,15,117,33,65)(2,144,16,118,34,66)(3,133,17,119,35,67)(4,134,18,120,36,68)(5,135,19,109,25,69)(6,136,20,110,26,70)(7,137,21,111,27,71)(8,138,22,112,28,72)(9,139,23,113,29,61)(10,140,24,114,30,62)(11,141,13,115,31,63)(12,142,14,116,32,64)(37,129,99,82,54,85)(38,130,100,83,55,86)(39,131,101,84,56,87)(40,132,102,73,57,88)(41,121,103,74,58,89)(42,122,104,75,59,90)(43,123,105,76,60,91)(44,124,106,77,49,92)(45,125,107,78,50,93)(46,126,108,79,51,94)(47,127,97,80,52,95)(48,128,98,81,53,96), (1,56,7,50)(2,49,8,55)(3,54,9,60)(4,59,10,53)(5,52,11,58)(6,57,12,51)(13,103,19,97)(14,108,20,102)(15,101,21,107)(16,106,22,100)(17,99,23,105)(18,104,24,98)(25,47,31,41)(26,40,32,46)(27,45,33,39)(28,38,34,44)(29,43,35,37)(30,48,36,42)(61,85,67,91)(62,90,68,96)(63,95,69,89)(64,88,70,94)(65,93,71,87)(66,86,72,92)(73,136,79,142)(74,141,80,135)(75,134,81,140)(76,139,82,133)(77,144,83,138)(78,137,84,143)(109,121,115,127)(110,126,116,132)(111,131,117,125)(112,124,118,130)(113,129,119,123)(114,122,120,128) );
G=PermutationGroup([[(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,85),(12,86),(13,129),(14,130),(15,131),(16,132),(17,121),(18,122),(19,123),(20,124),(21,125),(22,126),(23,127),(24,128),(25,76),(26,77),(27,78),(28,79),(29,80),(30,81),(31,82),(32,83),(33,84),(34,73),(35,74),(36,75),(37,141),(38,142),(39,143),(40,144),(41,133),(42,134),(43,135),(44,136),(45,137),(46,138),(47,139),(48,140),(49,70),(50,71),(51,72),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(97,113),(98,114),(99,115),(100,116),(101,117),(102,118),(103,119),(104,120),(105,109),(106,110),(107,111),(108,112)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,143,15,117,33,65),(2,144,16,118,34,66),(3,133,17,119,35,67),(4,134,18,120,36,68),(5,135,19,109,25,69),(6,136,20,110,26,70),(7,137,21,111,27,71),(8,138,22,112,28,72),(9,139,23,113,29,61),(10,140,24,114,30,62),(11,141,13,115,31,63),(12,142,14,116,32,64),(37,129,99,82,54,85),(38,130,100,83,55,86),(39,131,101,84,56,87),(40,132,102,73,57,88),(41,121,103,74,58,89),(42,122,104,75,59,90),(43,123,105,76,60,91),(44,124,106,77,49,92),(45,125,107,78,50,93),(46,126,108,79,51,94),(47,127,97,80,52,95),(48,128,98,81,53,96)], [(1,56,7,50),(2,49,8,55),(3,54,9,60),(4,59,10,53),(5,52,11,58),(6,57,12,51),(13,103,19,97),(14,108,20,102),(15,101,21,107),(16,106,22,100),(17,99,23,105),(18,104,24,98),(25,47,31,41),(26,40,32,46),(27,45,33,39),(28,38,34,44),(29,43,35,37),(30,48,36,42),(61,85,67,91),(62,90,68,96),(63,95,69,89),(64,88,70,94),(65,93,71,87),(66,86,72,92),(73,136,79,142),(74,141,80,135),(75,134,81,140),(76,139,82,133),(77,144,83,138),(78,137,84,143),(109,121,115,127),(110,126,116,132),(111,131,117,125),(112,124,118,130),(113,129,119,123),(114,122,120,128)]])
84 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | ··· | 6AB | 12A | ··· | 12AF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 18 | 18 | 18 | 18 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 2 | ··· | 2 |
84 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | C4○D4 | C4○D12 |
kernel | C2×C12.59D6 | C2×C32⋊4Q8 | C2×C4×C3⋊S3 | C2×C12⋊S3 | C12.59D6 | C2×C32⋊7D4 | C2×C6×C12 | C22×C12 | C2×C12 | C22×C6 | C3×C6 | C6 |
# reps | 1 | 1 | 2 | 1 | 8 | 2 | 1 | 4 | 24 | 4 | 4 | 32 |
Matrix representation of C2×C12.59D6 ►in GL4(𝔽13) generated by
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 5 | 8 |
0 | 0 | 5 | 0 |
1 | 1 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 4 | 11 |
0 | 0 | 2 | 2 |
12 | 12 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 9 | 2 |
0 | 0 | 11 | 4 |
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,5,5,0,0,8,0],[1,12,0,0,1,0,0,0,0,0,4,2,0,0,11,2],[12,0,0,0,12,1,0,0,0,0,9,11,0,0,2,4] >;
C2×C12.59D6 in GAP, Magma, Sage, TeX
C_2\times C_{12}._{59}D_6
% in TeX
G:=Group("C2xC12.59D6");
// GroupNames label
G:=SmallGroup(288,1006);
// by ID
G=gap.SmallGroup(288,1006);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,675,2693,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^12=c^6=1,d^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=b^6*c^-1>;
// generators/relations