Copied to
clipboard

G = C2×C12.58D6order 288 = 25·32

Direct product of C2 and C12.58D6

direct product, metabelian, supersoluble, monomial

Aliases: C2×C12.58D6, (C6×C12).25C4, (C3×C6)⋊8M4(2), (C2×C12).400D6, (C2×C62).15C4, C62(C4.Dic3), C62.112(C2×C4), (C22×C12).29S3, C12.61(C2×Dic3), (C2×C12).16Dic3, C3215(C2×M4(2)), (C6×C12).310C22, C12.212(C22×S3), (C3×C12).181C23, C324C831C22, C23.4(C3⋊Dic3), (C22×C6).18Dic3, C6.32(C22×Dic3), (C2×C6×C12).11C2, C33(C2×C4.Dic3), C4.41(C22×C3⋊S3), C4.14(C2×C3⋊Dic3), (C3×C12).126(C2×C4), (C2×C324C8)⋊20C2, (C22×C4).6(C3⋊S3), (C2×C4).6(C3⋊Dic3), (C2×C6).52(C2×Dic3), C2.3(C22×C3⋊Dic3), (C3×C6).121(C22×C4), C22.12(C2×C3⋊Dic3), (C2×C4).83(C2×C3⋊S3), SmallGroup(288,778)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C2×C12.58D6
C1C3C32C3×C6C3×C12C324C8C2×C324C8 — C2×C12.58D6
C32C3×C6 — C2×C12.58D6
C1C2×C4C22×C4

Generators and relations for C2×C12.58D6
 G = < a,b,c,d | a2=b12=c6=1, d2=b3, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b5, dcd-1=b6c-1 >

Subgroups: 404 in 204 conjugacy classes, 125 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2×C4, C2×C4, C23, C32, C12, C2×C6, C2×C6, C2×C8, M4(2), C22×C4, C3×C6, C3×C6, C3×C6, C3⋊C8, C2×C12, C22×C6, C2×M4(2), C3×C12, C3×C12, C62, C62, C62, C2×C3⋊C8, C4.Dic3, C22×C12, C324C8, C6×C12, C6×C12, C2×C62, C2×C4.Dic3, C2×C324C8, C12.58D6, C2×C6×C12, C2×C12.58D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, M4(2), C22×C4, C3⋊S3, C2×Dic3, C22×S3, C2×M4(2), C3⋊Dic3, C2×C3⋊S3, C4.Dic3, C22×Dic3, C2×C3⋊Dic3, C22×C3⋊S3, C2×C4.Dic3, C12.58D6, C22×C3⋊Dic3, C2×C12.58D6

Smallest permutation representation of C2×C12.58D6
On 144 points
Generators in S144
(1 134)(2 135)(3 136)(4 137)(5 138)(6 139)(7 140)(8 141)(9 142)(10 143)(11 144)(12 133)(13 58)(14 59)(15 60)(16 49)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 56)(24 57)(25 68)(26 69)(27 70)(28 71)(29 72)(30 61)(31 62)(32 63)(33 64)(34 65)(35 66)(36 67)(37 115)(38 116)(39 117)(40 118)(41 119)(42 120)(43 109)(44 110)(45 111)(46 112)(47 113)(48 114)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 97)(82 98)(83 99)(84 100)(85 128)(86 129)(87 130)(88 131)(89 132)(90 121)(91 122)(92 123)(93 124)(94 125)(95 126)(96 127)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 37 30)(2 38 31)(3 39 32)(4 40 33)(5 41 34)(6 42 35)(7 43 36)(8 44 25)(9 45 26)(10 46 27)(11 47 28)(12 48 29)(13 93 104 19 87 98)(14 94 105 20 88 99)(15 95 106 21 89 100)(16 96 107 22 90 101)(17 85 108 23 91 102)(18 86 97 24 92 103)(49 127 79 55 121 73)(50 128 80 56 122 74)(51 129 81 57 123 75)(52 130 82 58 124 76)(53 131 83 59 125 77)(54 132 84 60 126 78)(61 134 115)(62 135 116)(63 136 117)(64 137 118)(65 138 119)(66 139 120)(67 140 109)(68 141 110)(69 142 111)(70 143 112)(71 144 113)(72 133 114)
(1 81 4 84 7 75 10 78)(2 74 5 77 8 80 11 83)(3 79 6 82 9 73 12 76)(13 63 16 66 19 69 22 72)(14 68 17 71 20 62 23 65)(15 61 18 64 21 67 24 70)(25 50 28 53 31 56 34 59)(26 55 29 58 32 49 35 52)(27 60 30 51 33 54 36 57)(37 123 40 126 43 129 46 132)(38 128 41 131 44 122 47 125)(39 121 42 124 45 127 48 130)(85 119 88 110 91 113 94 116)(86 112 89 115 92 118 95 109)(87 117 90 120 93 111 96 114)(97 137 100 140 103 143 106 134)(98 142 101 133 104 136 107 139)(99 135 102 138 105 141 108 144)

G:=sub<Sym(144)| (1,134)(2,135)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,143)(11,144)(12,133)(13,58)(14,59)(15,60)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,57)(25,68)(26,69)(27,70)(28,71)(29,72)(30,61)(31,62)(32,63)(33,64)(34,65)(35,66)(36,67)(37,115)(38,116)(39,117)(40,118)(41,119)(42,120)(43,109)(44,110)(45,111)(46,112)(47,113)(48,114)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,97)(82,98)(83,99)(84,100)(85,128)(86,129)(87,130)(88,131)(89,132)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,37,30)(2,38,31)(3,39,32)(4,40,33)(5,41,34)(6,42,35)(7,43,36)(8,44,25)(9,45,26)(10,46,27)(11,47,28)(12,48,29)(13,93,104,19,87,98)(14,94,105,20,88,99)(15,95,106,21,89,100)(16,96,107,22,90,101)(17,85,108,23,91,102)(18,86,97,24,92,103)(49,127,79,55,121,73)(50,128,80,56,122,74)(51,129,81,57,123,75)(52,130,82,58,124,76)(53,131,83,59,125,77)(54,132,84,60,126,78)(61,134,115)(62,135,116)(63,136,117)(64,137,118)(65,138,119)(66,139,120)(67,140,109)(68,141,110)(69,142,111)(70,143,112)(71,144,113)(72,133,114), (1,81,4,84,7,75,10,78)(2,74,5,77,8,80,11,83)(3,79,6,82,9,73,12,76)(13,63,16,66,19,69,22,72)(14,68,17,71,20,62,23,65)(15,61,18,64,21,67,24,70)(25,50,28,53,31,56,34,59)(26,55,29,58,32,49,35,52)(27,60,30,51,33,54,36,57)(37,123,40,126,43,129,46,132)(38,128,41,131,44,122,47,125)(39,121,42,124,45,127,48,130)(85,119,88,110,91,113,94,116)(86,112,89,115,92,118,95,109)(87,117,90,120,93,111,96,114)(97,137,100,140,103,143,106,134)(98,142,101,133,104,136,107,139)(99,135,102,138,105,141,108,144)>;

G:=Group( (1,134)(2,135)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,143)(11,144)(12,133)(13,58)(14,59)(15,60)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,57)(25,68)(26,69)(27,70)(28,71)(29,72)(30,61)(31,62)(32,63)(33,64)(34,65)(35,66)(36,67)(37,115)(38,116)(39,117)(40,118)(41,119)(42,120)(43,109)(44,110)(45,111)(46,112)(47,113)(48,114)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,97)(82,98)(83,99)(84,100)(85,128)(86,129)(87,130)(88,131)(89,132)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,37,30)(2,38,31)(3,39,32)(4,40,33)(5,41,34)(6,42,35)(7,43,36)(8,44,25)(9,45,26)(10,46,27)(11,47,28)(12,48,29)(13,93,104,19,87,98)(14,94,105,20,88,99)(15,95,106,21,89,100)(16,96,107,22,90,101)(17,85,108,23,91,102)(18,86,97,24,92,103)(49,127,79,55,121,73)(50,128,80,56,122,74)(51,129,81,57,123,75)(52,130,82,58,124,76)(53,131,83,59,125,77)(54,132,84,60,126,78)(61,134,115)(62,135,116)(63,136,117)(64,137,118)(65,138,119)(66,139,120)(67,140,109)(68,141,110)(69,142,111)(70,143,112)(71,144,113)(72,133,114), (1,81,4,84,7,75,10,78)(2,74,5,77,8,80,11,83)(3,79,6,82,9,73,12,76)(13,63,16,66,19,69,22,72)(14,68,17,71,20,62,23,65)(15,61,18,64,21,67,24,70)(25,50,28,53,31,56,34,59)(26,55,29,58,32,49,35,52)(27,60,30,51,33,54,36,57)(37,123,40,126,43,129,46,132)(38,128,41,131,44,122,47,125)(39,121,42,124,45,127,48,130)(85,119,88,110,91,113,94,116)(86,112,89,115,92,118,95,109)(87,117,90,120,93,111,96,114)(97,137,100,140,103,143,106,134)(98,142,101,133,104,136,107,139)(99,135,102,138,105,141,108,144) );

G=PermutationGroup([[(1,134),(2,135),(3,136),(4,137),(5,138),(6,139),(7,140),(8,141),(9,142),(10,143),(11,144),(12,133),(13,58),(14,59),(15,60),(16,49),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,56),(24,57),(25,68),(26,69),(27,70),(28,71),(29,72),(30,61),(31,62),(32,63),(33,64),(34,65),(35,66),(36,67),(37,115),(38,116),(39,117),(40,118),(41,119),(42,120),(43,109),(44,110),(45,111),(46,112),(47,113),(48,114),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,97),(82,98),(83,99),(84,100),(85,128),(86,129),(87,130),(88,131),(89,132),(90,121),(91,122),(92,123),(93,124),(94,125),(95,126),(96,127)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,37,30),(2,38,31),(3,39,32),(4,40,33),(5,41,34),(6,42,35),(7,43,36),(8,44,25),(9,45,26),(10,46,27),(11,47,28),(12,48,29),(13,93,104,19,87,98),(14,94,105,20,88,99),(15,95,106,21,89,100),(16,96,107,22,90,101),(17,85,108,23,91,102),(18,86,97,24,92,103),(49,127,79,55,121,73),(50,128,80,56,122,74),(51,129,81,57,123,75),(52,130,82,58,124,76),(53,131,83,59,125,77),(54,132,84,60,126,78),(61,134,115),(62,135,116),(63,136,117),(64,137,118),(65,138,119),(66,139,120),(67,140,109),(68,141,110),(69,142,111),(70,143,112),(71,144,113),(72,133,114)], [(1,81,4,84,7,75,10,78),(2,74,5,77,8,80,11,83),(3,79,6,82,9,73,12,76),(13,63,16,66,19,69,22,72),(14,68,17,71,20,62,23,65),(15,61,18,64,21,67,24,70),(25,50,28,53,31,56,34,59),(26,55,29,58,32,49,35,52),(27,60,30,51,33,54,36,57),(37,123,40,126,43,129,46,132),(38,128,41,131,44,122,47,125),(39,121,42,124,45,127,48,130),(85,119,88,110,91,113,94,116),(86,112,89,115,92,118,95,109),(87,117,90,120,93,111,96,114),(97,137,100,140,103,143,106,134),(98,142,101,133,104,136,107,139),(99,135,102,138,105,141,108,144)]])

84 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D4E4F6A···6AB8A···8H12A···12AF
order12222233334444446···68···812···12
size11112222221111222···218···182···2

84 irreducible representations

dim111111222222
type+++++-+-
imageC1C2C2C2C4C4S3Dic3D6Dic3M4(2)C4.Dic3
kernelC2×C12.58D6C2×C324C8C12.58D6C2×C6×C12C6×C12C2×C62C22×C12C2×C12C2×C12C22×C6C3×C6C6
# reps124162412124432

Matrix representation of C2×C12.58D6 in GL5(𝔽73)

720000
01000
00100
00010
00001
,
720000
03000
082400
000240
00003
,
720000
01000
0347200
00080
00009
,
460000
027700
044600
000064
000700

G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[72,0,0,0,0,0,3,8,0,0,0,0,24,0,0,0,0,0,24,0,0,0,0,0,3],[72,0,0,0,0,0,1,34,0,0,0,0,72,0,0,0,0,0,8,0,0,0,0,0,9],[46,0,0,0,0,0,27,4,0,0,0,7,46,0,0,0,0,0,0,70,0,0,0,64,0] >;

C2×C12.58D6 in GAP, Magma, Sage, TeX

C_2\times C_{12}._{58}D_6
% in TeX

G:=Group("C2xC12.58D6");
// GroupNames label

G:=SmallGroup(288,778);
// by ID

G=gap.SmallGroup(288,778);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,422,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^6=1,d^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=b^6*c^-1>;
// generators/relations

׿
×
𝔽