# Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C3.A4

Direct product G=N×Q with N=C22 and Q=C2×C3.A4
dρLabelID
C23×C3.A472C2^3xC3.A4288,837

Semidirect products G=N:Q with N=C22 and Q=C2×C3.A4
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×C3.A4) = C2×C24⋊C9φ: C2×C3.A4/C22×C6C3 ⊆ Aut C2236C2^2:(C2xC3.A4)288,838
C222(C2×C3.A4) = D4×C3.A4φ: C2×C3.A4/C3.A4C2 ⊆ Aut C22366C2^2:2(C2xC3.A4)288,344

Non-split extensions G=N.Q with N=C22 and Q=C2×C3.A4
extensionφ:Q→Aut NdρLabelID
C22.1(C2×C3.A4) = C2×C42⋊C9φ: C2×C3.A4/C22×C6C3 ⊆ Aut C22363C2^2.1(C2xC3.A4)288,71
C22.2(C2×C3.A4) = C24⋊C18φ: C2×C3.A4/C22×C6C3 ⊆ Aut C22366C2^2.2(C2xC3.A4)288,73
C22.3(C2×C3.A4) = C42⋊C18φ: C2×C3.A4/C22×C6C3 ⊆ Aut C22726C2^2.3(C2xC3.A4)288,74
C22.4(C2×C3.A4) = C422C18φ: C2×C3.A4/C22×C6C3 ⊆ Aut C22366C2^2.4(C2xC3.A4)288,75
C22.5(C2×C3.A4) = 2- 1+4⋊C9φ: C2×C3.A4/C3.A4C2 ⊆ Aut C221444C2^2.5(C2xC3.A4)288,349
C22.6(C2×C3.A4) = C4×Q8⋊C9central extension (φ=1)288C2^2.6(C2xC3.A4)288,72
C22.7(C2×C3.A4) = C2×C4×C3.A4central extension (φ=1)72C2^2.7(C2xC3.A4)288,343
C22.8(C2×C3.A4) = C22×Q8⋊C9central extension (φ=1)288C2^2.8(C2xC3.A4)288,345
C22.9(C2×C3.A4) = C2×Q8.C18central extension (φ=1)144C2^2.9(C2xC3.A4)288,347

׿
×
𝔽