direct product, metabelian, soluble, monomial
Aliases: D4×C3.A4, C24⋊2C18, C3.(D4×A4), C22⋊(D4×C9), (C22×D4)⋊C9, (C22×C4)⋊C18, C12.7(C2×A4), (C3×D4).1A4, (C23×C6).2C6, C23.8(C2×C18), C6.13(C22×A4), (C22×C12).3C6, C4⋊(C2×C3.A4), (D4×C2×C6).C3, (C4×C3.A4)⋊3C2, (C2×C6).14(C2×A4), (C2×C6).12(C3×D4), C22⋊2(C2×C3.A4), (C22×C3.A4)⋊1C2, C2.2(C22×C3.A4), (C22×C6).36(C2×C6), (C2×C3.A4).7C22, SmallGroup(288,344)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×C3.A4
G = < a,b,c,d,e,f | a4=b2=c3=d2=e2=1, f3=c, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >
Subgroups: 366 in 116 conjugacy classes, 30 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, D4, D4, C23, C23, C9, C12, C12, C2×C6, C2×C6, C2×C6, C22×C4, C2×D4, C24, C18, C2×C12, C3×D4, C3×D4, C22×C6, C22×C6, C22×D4, C36, C3.A4, C2×C18, C22×C12, C6×D4, C23×C6, D4×C9, C2×C3.A4, C2×C3.A4, D4×C2×C6, C4×C3.A4, C22×C3.A4, D4×C3.A4
Quotients: C1, C2, C3, C22, C6, D4, C9, A4, C2×C6, C18, C3×D4, C2×A4, C3.A4, C2×C18, C22×A4, D4×C9, C2×C3.A4, D4×A4, C22×C3.A4, D4×C3.A4
(1 31 25 16)(2 32 26 17)(3 33 27 18)(4 34 19 10)(5 35 20 11)(6 36 21 12)(7 28 22 13)(8 29 23 14)(9 30 24 15)
(10 34)(11 35)(12 36)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(2 26)(3 27)(5 20)(6 21)(8 23)(9 24)(11 35)(12 36)(14 29)(15 30)(17 32)(18 33)
(1 25)(3 27)(4 19)(6 21)(7 22)(9 24)(10 34)(12 36)(13 28)(15 30)(16 31)(18 33)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
G:=sub<Sym(36)| (1,31,25,16)(2,32,26,17)(3,33,27,18)(4,34,19,10)(5,35,20,11)(6,36,21,12)(7,28,22,13)(8,29,23,14)(9,30,24,15), (10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (2,26)(3,27)(5,20)(6,21)(8,23)(9,24)(11,35)(12,36)(14,29)(15,30)(17,32)(18,33), (1,25)(3,27)(4,19)(6,21)(7,22)(9,24)(10,34)(12,36)(13,28)(15,30)(16,31)(18,33), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;
G:=Group( (1,31,25,16)(2,32,26,17)(3,33,27,18)(4,34,19,10)(5,35,20,11)(6,36,21,12)(7,28,22,13)(8,29,23,14)(9,30,24,15), (10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (2,26)(3,27)(5,20)(6,21)(8,23)(9,24)(11,35)(12,36)(14,29)(15,30)(17,32)(18,33), (1,25)(3,27)(4,19)(6,21)(7,22)(9,24)(10,34)(12,36)(13,28)(15,30)(16,31)(18,33), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );
G=PermutationGroup([[(1,31,25,16),(2,32,26,17),(3,33,27,18),(4,34,19,10),(5,35,20,11),(6,36,21,12),(7,28,22,13),(8,29,23,14),(9,30,24,15)], [(10,34),(11,35),(12,36),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(2,26),(3,27),(5,20),(6,21),(8,23),(9,24),(11,35),(12,36),(14,29),(15,30),(17,32),(18,33)], [(1,25),(3,27),(4,19),(6,21),(7,22),(9,24),(10,34),(12,36),(13,28),(15,30),(16,31),(18,33)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 9A | ··· | 9F | 12A | 12B | 12C | 12D | 18A | ··· | 18F | 18G | ··· | 18R | 36A | ··· | 36F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 2 | 2 | 3 | 3 | 6 | 6 | 1 | 1 | 2 | 6 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 4 | ··· | 4 | 2 | 2 | 6 | 6 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 |
type | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | C9 | C18 | C18 | D4 | C3×D4 | D4×C9 | A4 | C2×A4 | C2×A4 | C3.A4 | C2×C3.A4 | C2×C3.A4 | D4×A4 | D4×C3.A4 |
kernel | D4×C3.A4 | C4×C3.A4 | C22×C3.A4 | D4×C2×C6 | C22×C12 | C23×C6 | C22×D4 | C22×C4 | C24 | C3.A4 | C2×C6 | C22 | C3×D4 | C12 | C2×C6 | D4 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 6 | 6 | 12 | 1 | 2 | 6 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 |
Matrix representation of D4×C3.A4 ►in GL5(𝔽37)
0 | 1 | 0 | 0 | 0 |
36 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 36 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 10 | 0 |
0 | 0 | 0 | 0 | 10 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 36 | 36 | 36 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 36 | 36 | 36 |
0 | 0 | 1 | 0 | 0 |
26 | 0 | 0 | 0 | 0 |
0 | 26 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 33 |
0 | 0 | 33 | 0 | 0 |
0 | 0 | 0 | 33 | 0 |
G:=sub<GL(5,GF(37))| [0,36,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36],[1,0,0,0,0,0,1,0,0,0,0,0,10,0,0,0,0,0,10,0,0,0,0,0,10],[1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,36,0,1,0,0,36,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,36,1,0,0,0,36,0,0,0,1,36,0],[26,0,0,0,0,0,26,0,0,0,0,0,0,33,0,0,0,0,0,33,0,0,33,0,0] >;
D4×C3.A4 in GAP, Magma, Sage, TeX
D_4\times C_3.A_4
% in TeX
G:=Group("D4xC3.A4");
// GroupNames label
G:=SmallGroup(288,344);
// by ID
G=gap.SmallGroup(288,344);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-3,-2,2,197,142,1531,2666]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=b^2=c^3=d^2=e^2=1,f^3=c,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations