Extensions 1→N→G→Q→1 with N=C3×D8 and Q=S3

Direct product G=N×Q with N=C3×D8 and Q=S3
dρLabelID
C3×S3×D8484C3xS3xD8288,681

Semidirect products G=N:Q with N=C3×D8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×D8)⋊1S3 = C327D16φ: S3/C3C2 ⊆ Out C3×D8144(C3xD8):1S3288,301
(C3×D8)⋊2S3 = D8×C3⋊S3φ: S3/C3C2 ⊆ Out C3×D872(C3xD8):2S3288,767
(C3×D8)⋊3S3 = C24.26D6φ: S3/C3C2 ⊆ Out C3×D8144(C3xD8):3S3288,769
(C3×D8)⋊4S3 = C248D6φ: S3/C3C2 ⊆ Out C3×D872(C3xD8):4S3288,768
(C3×D8)⋊5S3 = C3×C3⋊D16φ: S3/C3C2 ⊆ Out C3×D8484(C3xD8):5S3288,260
(C3×D8)⋊6S3 = C3×D8⋊S3φ: S3/C3C2 ⊆ Out C3×D8484(C3xD8):6S3288,682
(C3×D8)⋊7S3 = C3×D83S3φ: trivial image484(C3xD8):7S3288,683

Non-split extensions G=N.Q with N=C3×D8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×D8).1S3 = C9⋊D16φ: S3/C3C2 ⊆ Out C3×D81444+(C3xD8).1S3288,33
(C3×D8).2S3 = D8.D9φ: S3/C3C2 ⊆ Out C3×D81444-(C3xD8).2S3288,34
(C3×D8).3S3 = D8×D9φ: S3/C3C2 ⊆ Out C3×D8724+(C3xD8).3S3288,120
(C3×D8).4S3 = D83D9φ: S3/C3C2 ⊆ Out C3×D81444-(C3xD8).4S3288,122
(C3×D8).5S3 = C328SD32φ: S3/C3C2 ⊆ Out C3×D8144(C3xD8).5S3288,302
(C3×D8).6S3 = D8⋊D9φ: S3/C3C2 ⊆ Out C3×D8724(C3xD8).6S3288,121
(C3×D8).7S3 = C3×D8.S3φ: S3/C3C2 ⊆ Out C3×D8484(C3xD8).7S3288,261

׿
×
𝔽